• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UTA, DOE lab partner to prove new atomic cooling techniques

Bioengineer by Bioengineer
November 22, 2023
in Chemistry
Reading Time: 2 mins read
0
Ben Jones
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The U.S. Department of Energy has awarded associate professor of physics Benjamin Jones a $540,000 grant to initiate a new collaborative research partnership between The University of Texas at Arlington and the Pacific Northwest National Laboratory in Richland, Washington. The project aims to prove a new atomic cooling approach required for the next generation of neutrino mass research.

Ben Jones

Credit: The University of Texas at Arlington

The U.S. Department of Energy has awarded associate professor of physics Benjamin Jones a $540,000 grant to initiate a new collaborative research partnership between The University of Texas at Arlington and the Pacific Northwest National Laboratory in Richland, Washington. The project aims to prove a new atomic cooling approach required for the next generation of neutrino mass research.

Neutrinos are the most abundant particles with mass in the universe. Every time atomic nuclei come together (in the case of stars like the sun) or break apart (such as in nuclear reactors), neutrinos are produced. Even simple everyday items like bananas emit neutrinos from the natural radioactivity of potassium in the fruit.

Scientists believe that studying neutrinos can help us understand how the universe came to contain matter rather than nothing at all and how the laws of physics behave at the smallest distance scales.

In addition to having little mass, neutrinos also interact very weakly, making it difficult for scientists to pinpoint them for proper study. For this project, researchers will develop new methods of creating slow and cold atomic beams that can be trapped and used as sources for precision neutrino mass measurements.

This innovative approach will use partially cooled lithium and accommodated tritium that will serve as an input to the Cyclotron Radiation Emission Spectroscopy systems that are part of the Project 8 collaboration. Project 8 is a long-term collaboration of international scientists studying neutrino mass with funding from the U.S. Department of Energy, National Science Foundation, the PRISMA+ Cluster of Excellence at the University of Mainz in Germany and numerous universities.

“The unknown absolute value of the mass of the neutrino is one of the most glaring holes in our understanding of particle physics,” Jones said. “This project will initiate an exciting new collaboration between UTA’s emerging research capabilities and the Department of Energy as we work together to test novel atomic cooling approaches required to enable the next generation of neutrino mass research.”

Jones and his team have been working together on research at the interface of atomic, molecular, optical and nuclear physics since 2016. Since then, their primary focus has been single barium ion tagging in high-pressure xenon gas, a technique to enable future background-free neutrinoless double beta decay searchers.

“These projects are characteristic of our unique approach within the UTA Center for Advanced Detector Technologies,” Jones said. “By employing techniques from the cutting edge of a variety of disciplines, we can develop new technologies that attack difficult scientific problems in new and innovative ways. The new magnetically slowed and cooled beamline technology may also have other applications, including precision magnetometry and low temperature searches for dark matter.”



Share12Tweet8Share2ShareShareShare2

Related Posts

Tetrafunctional Cyclobutanes Enhance Toughness Through Network Continuity

November 14, 2025
“‘Great Unified Microscope’ Enables Visualization of Structures from Micro to Nanoscale”

“‘Great Unified Microscope’ Enables Visualization of Structures from Micro to Nanoscale”

November 14, 2025

Nickel-Catalyzed Regioselective Hydrogen Metallation Cyclization of Alkynylcyclobutanones Enables Synthesis of Bicyclo[2.1.1]hexanes

November 14, 2025

Scripps Research Scientists Featured on Clarivate’s Prestigious Highly Cited Researchers List

November 14, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glycerol-3-Phosphate Drives Lipogenesis in Citrin Deficiency

Tetrafunctional Cyclobutanes Enhance Toughness Through Network Continuity

Reevaluating Uterine Closure Techniques in Cesarean Deliveries: A Call for Change

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.