• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

USTC realizes the first on-chip valley-dependent quantum interference

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research team, led by academician GUO Guangcan from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), collaborating with researchers from Sun Yat-sen University and Zhejiang University, realized two-photon quantum interference in the structure of valley-dependent topological insulators based on the valley Hall effect.

The study was published in Physical Review Letters on June 11st, 2021.

Topological photonics has a practical application prospect in the research of photonic chips due to its robust energy transport prosperities. The key to topological phase transition is to generate an energy gap at certain degenerate points by breaking either the time-reversal symmetry (TRS) or inversion symmetry.

By breaking the spatial inversion symmetry of the system, the valley-dependent helical edge states travel in certain directions, which is known as Valley-Hall effect. Hexagonal lattice photonic crystals (PCs) with inequivalent sublattices can realize the valley-dependent topological insulators. More compact and sharp bending optical circuit can be realized, which contributes to device integration and robust energy.

In recent years, robust quantum state transfer in topology has been a hot research. Yet as the core of photonic quantum information, quantum interference remains to be verified in topologically protected PCs chip.

Researchers designed and fabricated harpoon-shaped beam splitters (HSBSs) in silicon photonic crystals. The orientation of the electromagnetic phase vortex inside PCs with hexagonal lattice structure depends on lattice structure with different topological Chern numbers and its band position, thereby to form two topological edges of different structures.

Based on a 120-deg-bending interfaces, they realized on-chip Hong-Ou-Mandel (HOM) interference in one HSBS with a high visibility of 95.6%. Furthermore, the generation of path-entangled state in valley-dependent quantum circuits is demonstrated by cascading two HSBSs.

The study provides a novel method for topological photonics, especially topological insulators, to be applied in more complex quantum information processing. Reviewers agreed that the research is interesting and important, and highly praised that “This is an interesting and important work. I find the results interesting, in particular, the implementation of the Hong-Ou-Mande effect in this device, which may have implications in high fidelity on-chip quantum information processing.”

###

Media Contact
Jane FAN Qiong
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.126.230503

Tags: Chemistry/Physics/Materials SciencesOptics
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Optimizing Energy-Level Alignment in Perovskite Solar Cells: Insights from an Energy Flow Perspective

September 9, 2025
blank

Tiny Yet Mighty: Metamaterial Lenses Revolutionize Phones and Drones

September 9, 2025

UZH Device Pioneers Search for Light Dark Matter

September 8, 2025

Unlocking Insulators: How Light Pulses Set Electrons Free

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preduodenal Portal Vein: Diverse Cases and Surgery Insights

How Evolution Sheds Light on Autism Rates in Humans

Advancing Precision Psychiatry in Eating Disorders

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.