• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

USTC proposes new constraints on exotic spin-spin-velocity-dependent interactions between electron spins

Bioengineer by Bioengineer
June 17, 2024
in Chemistry
Reading Time: 2 mins read
0
USTC Proposes New Constraints on Exotic Spin-spin-velocity-dependent Interactions Between Electron Spins
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by academician DU Jiangfeng and Prof. RONG Xing from University of Science and Technology of China (USTC) of Chinese Academy of Science (CAS), in collaboration with Professor Jiao Man from Zhejiang University, has utilized solid-state spin quantum sensors to scrutinize exotic spin-spin-velocity-dependent interactions (SSIVDs) at short force ranges, reporting new experimental results between electron spins. This work has been published in Physical Review Letters.

USTC Proposes New Constraints on Exotic Spin-spin-velocity-dependent Interactions Between Electron Spins

Credit: ustc

A research team led by academician DU Jiangfeng and Prof. RONG Xing from University of Science and Technology of China (USTC) of Chinese Academy of Science (CAS), in collaboration with Professor Jiao Man from Zhejiang University, has utilized solid-state spin quantum sensors to scrutinize exotic spin-spin-velocity-dependent interactions (SSIVDs) at short force ranges, reporting new experimental results between electron spins. This work has been published in Physical Review Letters.

 

The Standard Model is a very successful theoretical framework in particle physics, describing fundamental particles and four basic interactions. However, the Standard Model still cannot explain some important observational facts in current cosmology, such as dark matter and dark energy. Some theories suggest that new particles can act as propagators, transmitting new interactions between Standard Model particles. At present, there is a lack of experimental research on new interactions related to velocity between spins, especially in the relatively small range of force distance, where experimental verification is almost non-existent.

 

The researchers designed an experimental setup equipped with two diamonds. A high-quality nitrogen-vacancy (NV) ensemble was prepared on the surface of each diamond using chemical vapor deposition. The electron spin in one NV ensemble serves as a spin sensor, while the other acts as a spin source.

 

The researchers searched for new interaction effects between the velocity-dependent spin of electrons on a micrometer scale by coherently manipulating the spin quantum states and relative velocities of two diamond NV ensembles. First, they used a spin sensor to characterize the magnetic dipole interaction with the spin source as a reference. Then, by modulating the vibration of the spin source and performing lock-in detection and phase orthogonal analysis, they measured the SSIVDs.

 

For two new interactions, the researchers conducted the first experimental detection in the force range of less than 1 cm and less than 1 km respectively, obtaining valuable experimental data.

 

As the editor remarked, “the results bring new insights to the quantum sensing community to explore fundamental interactions exploiting the compact, flexible, and sensitive features of solid-state spins.”

 

 



Journal

Physical Review Letters

DOI

10.1103/PhysRevLett.132.180801

Article Title

New Constraints on Exotic Spin-Spin-Velocity-Dependent Interactions with Solid-State Quantum Sensors

Article Publication Date

30-Apr-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

October 1, 2025
Atom-photon entanglement breakthrough opens new horizons for future quantum networks

Atom-photon entanglement breakthrough opens new horizons for future quantum networks

September 30, 2025

Charting the Cosmos Made Simpler

September 30, 2025

Scientists Discover Room-Temperature Method to Enhance Light-Harvesting and Emission Devices

September 30, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Urban Quality of Life in Africa: Policy vs Reality

Scaling Sustainable Cacao Farming in Colombia

Polygenic Risk Scores Vary Across Populations in Diabetes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.