• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

USTC proposes crystalline sponge method for undergraduate course

Bioengineer by Bioengineer
January 2, 2024
in Chemistry
Reading Time: 2 mins read
0
USTC Proposes Crystalline Sponge Method for Undergraduate Course
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The crystal sponge technology is a revolutionary technique, which enables the direct and precise determination of the molecular structure of liquid and gas targets. The technique uses a special network complex to selectively absorb liquid or gas target molecules and order them over long distances, thus achieving a breakthrough in determining the precise structure of liquid or even gas molecules by conventional single crystal X-ray diffraction technology. The remarkable technology is recognized as a subversive breakthrough to the traditional single crystal structure analysis technology.

USTC Proposes Crystalline Sponge Method for Undergraduate Course

Credit: USTC

The crystal sponge technology is a revolutionary technique, which enables the direct and precise determination of the molecular structure of liquid and gas targets. The technique uses a special network complex to selectively absorb liquid or gas target molecules and order them over long distances, thus achieving a breakthrough in determining the precise structure of liquid or even gas molecules by conventional single crystal X-ray diffraction technology. The remarkable technology is recognized as a subversive breakthrough to the traditional single crystal structure analysis technology.

 

However, due to limitations like experimental reagent toxicity and theoretical knowledge reserve in this work, this technology has not been successfully applied to undergraduate experimental teaching.

 

Professors from the Chemistry Experimental Teaching Center of the University of Science and Technology of China (USTC) of Chinese Academy of Sciences (CAS) have designed an overall laboratory experiment with reaction conditions and characterizations friendly for students to perform and managed to expose undergraduates to the crystalline method, the cutting-edge technique.

 

The results were published Dec. 8 in the Journal of Chemical Education of the American Chemical Society, which marks the first USTC chemical education teaching research paper published in the top international education journals.

 

Prof. LI Lingling, Prof. ZHU Pingping and Prof. ZHANG Qingwei from the Chemistry Experiment Teaching Center of USTC select this technology from a large number of cutting-edge research achievements. In order to enable undergraduates to understand and master this important technology, the team transformed the crystal sponge technology into a safe, universal and easy-to-use undergraduate teaching experiment for the first time through systematic adjustment and optimization of experimental conditions and overall teaching design, and completed 3-semester experimental teaching. The teaching experiment achieved high-quality training results, winning unanimous recognition from students and teaching supervisors.

 

The teaching practice has proved experiment helpful to update students’ understanding of crystallization technology and liquid organic compound structure analysis. It improves students’ innovative thinking, and provides strong technical support for their future development in organic synthesis, pharmacology and other fields.



DOI

10.1021/acs.jchemed.3c00714

Article Title

Capturing the Precise Structure of Liquids: The Crystalline Sponge Method for an Undergraduate Laboratory Course

Article Publication Date

8-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025
Metal-Hydroxyls Drive Proton Transfer in O–O Formation

Metal-Hydroxyls Drive Proton Transfer in O–O Formation

November 15, 2025

What Insights Do Polymers Offer for Advancing Alzheimer’s Disease Treatment?

November 15, 2025

Breakthrough: Lead-Free Alternative Unveiled for Key Electronics Component

November 15, 2025

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    109 shares
    Share 44 Tweet 27
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reenergizing Worn-Out Immune Cells Enhances Tumor Destruction

Promising Safety and Efficacy of SPVN06 Gene Therapy

Wuhan’s Winter 2024: Bacterial and Fungal Aerosol Analysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.