• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Using water molecules to read electrical activity in lipid membranes

Bioengineer by Bioengineer
April 2, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jamani Caillet/EPFL

Every human cell is encased in a five-nanometer-thick lipid membrane that protects it from the surrounding environment. Like a gatekeeper, the membrane determines which ions and molecules can pass through. In so doing, it ensures the cell's well-being and stability and allows it to communicate via electrical signals.

Researchers from the Laboratory for fundamental BioPhotonics (LBP) in EPFL's School of Engineering were able to track these moving charges in real time in a completely non-invasive manner. Rather than observing the membranes themselves, they looked at the surrounding water molecules, which, in addition to keeping the membrane intact, change orientation in the presence of electrical charges. So by 'reading' their position, the researchers were able to create a dynamic map of how charges are transported across a membrane.

The researchers' method has just been published in the journal Proceedings of the National Academy of Sciences (PNAS). It could shed light on how ion channels function, along with other processes at work in membranes. This clinically viable method could potentially also be used to directly track ion activity in neurons, which would deepen researchers' knowledge of how nerve cells work. "Water molecules can be found wherever there are lipid membranes, which need these molecules to exist," says Sylvie Roke, head of the LBP. "But until now, most studies on membranes didn't look at these molecules. We've shown that they contain important information."

The researchers did this by using a unique second-harmonic microscope that was invented at the LBP. The imaging efficiency of this microscope is more than three orders of magnitude greater than that of existing second-harmonic microscopes. With this microscope, the researchers obtained images of water molecules at a time scale of 100 milliseconds.

To probe the lipid membranes' hydration, the researchers combine two lasers of the same frequency (femtosecond pulses) in a process that generates photons with a different frequency: this is known as second-harmonic light. It is generated only at interfaces and reveals information on the orientation of water molecules. "We can observe what's happening in situ, and we don't need to modify the environment or use bulky markers like fluorophores that would disturb water molecules' movement" says Orly Tarun, the publication's lead author.

Unexpected charge fluctuations are observed

With this method, the researchers observed charge fluctuations in membranes. Such fluctuations were previously unknown and hint at much more complex chemical and physical behavior than is currently considered.

###

Reference: O. Tarun, C. Hannesschläger, P. Pohl, and S. Roke, A label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales, PNAS

Laboratory of fundamental BioPhotonics (LBP) – Julia Jacobi Chair of Photomedicine

Media Contact

Sylvie Roke
[email protected]
41-216-931-191
@EPFL_en

http://www.epfl.ch/index.en.html

Share16Tweet8Share2ShareShareShare2

Related Posts

Gene Analysis Uncovers Metal Exposure in Synechococcus

Gene Analysis Uncovers Metal Exposure in Synechococcus

September 22, 2025
Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

September 22, 2025

“‘Youth Molecule’ Shows Promise in Enhancing Quality of Life for Older Adults, Clinical Studies Reveal”

September 22, 2025

Ancient Defense Meets Modern Science: How Conifers Protect Themselves From Predators

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hidden Threats: How “Forever Chemicals” PFAS Endanger Global Farmlands

Spotting Neonatal Peripheral Infusion Issues Early

Assessing Technology Impact on Agriculture and Resources

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.