• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Using the past to predict the future: climate change impacts on the sagebrush sea

Bioengineer by Bioengineer
April 6, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LOGAN, UTAH, USA- Scientists from Utah State University developed a new way to use long-term population data to model how species could respond to climate change in the future.

Using thousands of observations of big sagebrush (Artemisia tridentata) growth from Arizona to Washington, Andy Kleinhesselink and Peter Adler showed that sagebrush populations at cold sites increased after warmer than average years, whereas populations at hot sites decreased after warmer than average years. In a rapidly warming climate, this pattern suggests that sagebrush populations may decline in the future at the hot edge of this species range, whereas populations may increase in colder areas. These changes may have important effects on wildlife such as the Greater Sage-Grouse (Centrocercus urophasianus) which depends on sagebrush for habitat and food.

The novelty and strength of this new research is in combining measurements made over many decades from many hundreds of locations. The study includes 8175 observations of year-to-year change in sagebrush abundance from 131 monitoring sites across western North America (see map). The growth of sagebrush at each site was compared with temperature and precipitation records to determine how year-to-year variation in weather affected sagebrush growth.

The key insight of the study is that the effect of weather on sagebrush growth changes across the species' geographic range. Warm years help sagebrush at cold, high elevation sites, but hurt sagebrush at hot, low elevation sites. This pattern is consistent with results from previous studies based only on patterns of sagebrush occurrences. However, because the current study combines long-term data with occurrence records, it forges a more direct link between climate and species distribution and abundance.

One of the key benefits of taking this approach for sagebrush, and for other species, is that it allows for ecologists to produce short-term quantitative forecasts for how species populations will respond to annual climate variation. Because these forecasts can be made for the effects of short-term climate variation (1-10 years) they in theory can be tested relatively quickly. This will lead to a cycle of model testing and refinement that ultimately could improve our long-term forecasts, and build confidence in the predictions ecologists are making.

While species distribution models for sagebrush have predicted that global warming could lead to more sagebrush in cold regions and less in hot regions, the new work uses an entirely new modeling approach and an independent set of data. However, the study also showed that sagebrush may be less responsive to precipitation than expected: sagebrush in dry locations did not grow more after wet years than sagebrush in wet locations. Overall, the results suggest that long-term changes in temperature may be more important for the future of sagebrush than changes in precipitation.

###

Media Contact

Andy Kleinhesselink
[email protected]
541-973-1725

https://qcnr.usu.edu/

https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2191

Related Journal Article

http://dx.doi.org/10.1002/ECY.2191

Share12Tweet7Share2ShareShareShare1

Related Posts

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

August 23, 2025
blank

New Jurassic Bittacidae Species Reveal Wing Spot Diversity

August 23, 2025

Japanese Barn Swallows Drive Summer Decline in Male Bees

August 23, 2025

Phytobiotic Additives Improve Broiler Health Post-Eimeria Challenge

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Link Between Type 2 Diabetes and Heart Failure

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.