• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Using fruit flies to study cancer: FSU scientists investigate childhood tumors

Bioengineer by Bioengineer
January 30, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

TALLAHASSEE, Fla. — A team of Florida State University researchers has discovered that a common household pest can tell us a lot about an aggressive tumor that attacks young children.

Professor of Biological Science Wu-Min Deng and postdoctoral researcher Gengqiang Xie published a new paper in the journal Cancer Research that describes how a complex protein called Snr1, the homologue of human SMARCB1/hSNF5/INI1, acts as a tumor suppressor in an unconventional manner in fruit flies.

Fruit flies are often used as a model to determine the basic fundamentals of several diseases in humans, including cancer, because about 75 percent of human disease-causing genes have a counterpart in the fly.

"Basically, we used a fly's imaginal tissue, composed of cells similar to human epithelia, to understand this cancer gene," Xie said. "There's no treatment for this cancer, so we need to understand how it works first."

Xie and Deng are specifically looking at malignant rhabdoid tumors, highly aggressive tumors that attack the brain or the kidneys and occur primarily in children under 2 years old. There are about 20 to 25 new cases diagnosed each year, according to the Dana-Farber Cancer Institute.

Little is known about these tumors, so finding a cure is incredibly difficult. Researchers investigating the disease are focused on learning how the body functions and why these tumors occur at all.

In studying the fruit flies, Xie and Deng homed in on a specific protein that was generally known as part of a larger protein complex crucial to normal growth and development. They found this protein, which is analogous to one in humans, was molecularly and functionally different than other components of the protein complex.

In carefully orchestrated experiments, researchers removed that protein from several fruit flies. When they did this, the fruit flies immediately experienced tumor growth in the tissues that line the organs.

"It really has a lot of potential because if you want to find treatments, you need to understand how it works," Deng said. "We knew this information would be very useful in understanding human tumor growth."

Deng and Xie hope to further investigate this protein to find out what causes it to occasionally misfire and stop suppressing the tumor growth. Their long-term goal is to find drug molecules to test on these proteins to see if they can develop a treatment.

###

Other institutions contributing to the research are the Chinese Academy of Sciences, the National Cancer Institute and the Sino-French Hoffmann Institute at the Guangzhou Medical University in China.

The research was supported by the National Institutes of Health and the National Science Foundation.

Media Contact

Kathleen Haughney
[email protected]
850-644-1489
@floridastate

http://www.fsu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Discovering Safer Implant Designs for Total Hip Replacement

October 28, 2025

Multi-Lens Ultrasound Maps 3D Organ Microvasculature

October 28, 2025

Faster Brainstem Neural Signals in Small Premature Infants

October 28, 2025

Exploring Methodological Diversity in Swedish Nursing Theses

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering Safer Implant Designs for Total Hip Replacement

Multi-Lens Ultrasound Maps 3D Organ Microvasculature

Faster Brainstem Neural Signals in Small Premature Infants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.