• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Using building materials to monitor for high enriched uranium

Bioengineer by Bioengineer
July 15, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new paper details how small samples of ubiquitous building materials, such as tile or brick, can be used to test whether a facility has ever stored high enriched uranium (HEU), which can be used to create nuclear weapons. The technique could serve as a valuable forensic tool for national or international efforts related to nuclear nonproliferation and security.

“We can now use the housing structure itself as part of any nonproliferation monitoring efforts,” says Robert Hayes, an associate professor of nuclear engineering at North Carolina State University and author of the paper. “This work details the theory to test building material samples to differentiate between the forms of uranium used in nuclear power and the HEU that’s used to develop nuclear weapons.”

The technique builds on previous work done by Hayes and his research team.

The method requires testing a relatively small core sample of the relevant building material, about the size of your pinkie finger. The testing is done using hardware somewhat similar to that used to assess radiation exposure of dosimeter badges worn by workers in the nuclear power industry. In a sense, a small piece of any wall effectively becomes a dosimeter badge.

“Our technique allows us to determine how much radiation a material has been exposed to, in addition to the very types of radiation a material has been exposed to,” Hayes says. “Because different radionuclides have different radiation fields, these measurements allow us to determine which nuclear materials were stored near whatever building material we’re sampling.”

While this technique is new, there is already interest in it among the agencies responsible for nuclear monitoring – and Hayes is working to improve the technique further.

“We’re optimistic that this will be a valuable tool in the nonproliferation monitoring toolbox, but we need to address some existing questions,” Hayes says.

“For example, the radiation signature will vary depending on where the nuclear material was stored in relation to whatever sample we’re testing. If our sample was from brick that was right under a uranium storage container, the signature will be different than if the container was located 20 feet away, horizontally. Theoretically, these properties of the signature would be consistent over any gridded array of the same building material. Sampling such an array would then allow us to reconstruct not only what material was stored at a site, but precisely where it was stored. That’s something we’re working on now.”

###

The paper, “Potential Retrospective Uranium Enrichment Determination Using Solid State Dosimetry Techniques on Ubiquitous Building Materials,” is published in the Journal of Nuclear Materials Management.

The research was done with support from the Nuclear Regulatory Commission, under grant NRC-HQ-84-14-G-0059; and from the Consortium for Nonproliferation Enabling Capabilities under grant DE-NA0002576, which is based at NC State and sponsored by the National Nuclear Security Administration.

Media Contact
Matt Shipman
[email protected]
https://news.ncsu.edu/2019/07/using-building-materials-to-monitor-for-high-enriched-uranium/

Tags: Chemistry/Physics/Materials SciencesNuclear PhysicsResearch/DevelopmentTechnology/Engineering/Computer ScienceWeaponry
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1281 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    190 shares
    Share 76 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Study to Reduce Home Treatment for Dementia

Evaluating Integrated Safety Management Systems: A Study

Avocado Seed Meal Boosts Quail Growth and Meat Quality

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.