• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

USF Biologists find frog’s future health influenced by gut…

Bioengineer.org by Bioengineer.org
January 24, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of South Florida

TAMPA, Fla. (July 20, 2017) – University of South Florida biologists have found that a crucial window in the development of tadpoles may influence a frog's later ability to fight infectious diseases as an adult.

The findings from a research team led by USF post-doctoral researcher Sarah Knutie in USF's Department of Integrative Biology focused on the potentially protective gut microbes of young frogs and is published in the new edition of the journal Nature Communications, released today.

The project is significant not only for the insight it provides in threats to the health of the world's frogs, but in its potential applicability to understanding the immune systems of mammals and even humans.

Several factors such as pollutants, antibiotics, nutrition and climate can disrupt the microbes of animals as well as increase the risk of infectious disease. Working in the lab of USF associate professor Jason Rohr, the scientists showed that an early-life disruption of the gut and skin bacterial communities of tadpoles later affects the adult frogs' ability to fight off parasitic gut worms. In contrast, the bacterial communities of adult frogs at the time of infection did not affect their ability to resist parasites.

"Our study found that a disruption of bacteria in tadpoles has enduring negative effects on how adult frogs deal with their parasite," Knutie said. "These results suggest that preventing early-life disruptions of bacteria by factors such as nutrition, antibiotics and pollution, might confer protection against diseases later in life."

The impact of a healthy bacterial community in the gut is an increasing focus of scientists looking to understand a wide-range of ailments in a many species, including humans. Previous research has found that an early-life disruption of the gut microbiota mammals can result in a hyper-reactive immune system that may increase the subsequent risk of immune-related health issues, such as allergies and autoimmune diseases.

Research led by Rohr and his lab has long explored an array of threats, such as pesticides and diseases, which are contributing to the plummeting populations of amphibians and considered one of the greatest threats to global biodiversity. Understanding how the bacterial community can protect hosts against such threats might provide insight into conserving biodiversity.

In their experiments, the scientific team manipulated the bacterial communities of Cuban tree frog tadpoles (Osteopilus septentrionalis) and then exposed them to parasites later in life. The tadpoles were either raised in natural pond water or one of three other treatments to manipulate the bacterial communities of tadpoles: sterile pond water, sterile pond water with short-term antibiotics, or sterile pond water with long-term antibiotics.

Adult frogs that had reduced bacterial diversity as tadpoles had three times more parasites than adults that did not have their microbiota disrupted as tadpoles, the study said. Those results suggest that preventing early-life disruptions of host-associated bacterial communities might reduce infection risk later in life, the researchers wrote.

"We think that the microbiota of juveniles likely played a role in priming the immune system against parasite establishment," the researchers wrote. "We found that the relative abundance of certain bacteria … in juveniles was positively correlated with parasite resistance in adulthood."

###

The team of scientists include Knutie, Rohr and former undergraduate Christina Wilkinson of USF, and Kevin Kohl of the University of Pittsburgh. Knutie begins a faculty position at the University of Connecticut in August.

The project was funded by the National Science Foundation, the British Ecological Society, the National Institutes of Health, the U.S. Department of Agriculture and the Environmental Protection Agency.

Media Contact

Adam Freeman
[email protected]
813-974-9047
@USFResearch

http://www.usf.edu/research-innovation/

Share12Tweet7Share2ShareShareShare1

Related Posts

CSF Proteomics Uncovers Biomarkers in Pediatric Meningitis

October 14, 2025

Exploring Future Research Trends in Health Systems

October 14, 2025

Safety Assessment of Hyunburikyung-tang for Dysmenorrhea

October 14, 2025

Endothelial Activation Linked to Diabetic Retinopathy Risk

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1241 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CSF Proteomics Uncovers Biomarkers in Pediatric Meningitis

Exploring Future Research Trends in Health Systems

Safety Assessment of Hyunburikyung-tang for Dysmenorrhea

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.