• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

USC Viterbi researchers develop new class of optoelectronic materials

Bioengineer by Bioengineer
April 11, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Semiconductors are used for myriad optoelectronic devices. However, as devices get smaller and smaller and more demanding, new materials are needed to ensure that devices work with greater efficiency. Now, researchers at the USC Viterbi School of Engineering have pioneered a new class of semiconductor materials that might enhance the functionality of optoelectronic devices and solar panels–perhaps even using one hundred times less material than the commonly used silicon.

Researchers at USC Viterbi, led by Jayakanth Ravichandran, an assistant professor in the Mork Family Department of Chemical Engineering and Material Sciences and including Shanyuan Niu, Huaixun Huyan, Yang Liu, Matthew Yeung, Kevin Ye, Louis Blankemeier, Thomas Orvis, Debarghya Sarkar, Assistant Professor of Electrical Engineering Rehan Kapadia, and David J. Singh, a professor of physics from University of Missouri, have developed a new class of materials that are superior in performance and have reduced toxicity. Their process, documented in "Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenide," is published in Advanced Materials.

Ravichandran, the lead on this research, is a materials scientist, who has always been interested in understanding the flow of electrons and heat through materials, as well as the how electrons interact within materials. This deep knowledge of how material composition affects electron movement was critical to Ravichandran's and his colleagues' most recent innovation.

Computers and electronics have been getting better, but according to Jayakanth Ravichandran, the principal investigator of this study, "the performance of the most basic device–the transistors –are not getting better." There is a plateau in terms of performance, as noted by what is considered the "end of Moore's law." Similar to electronics, there is a lot of interest to develop high performance semiconductors for opto-electronics. The collaborative team of material scientists and electrical engineers wanted to develop new materials which could showcase the ideal optical and electrical properties for a variety of applications such as displays, light detectors and emitters, as well as solar cells.

The researchers developed a class of semiconductors called "transition metal perovskite chalcogenides." Currently, the most useful semiconductors don't hold enough carriers for a given volume of material (a property which is referred to as "density of states") but they transport electrons fast and thus are known to have high mobility. The real challenge for scientists has been to increase this density of states in materials, while maintaining high mobility. The proposed material is predicted to possess these conflicting properties.

As a first step to show its potential applications, the researchers studied its ability absorb and emit light. "There is a saying," says Ravichandran of the dialogue among those in the optics and photonics fields, "that a very good LED is also a very good solar cell." Since the materials Ravichandran and his colleagues developed absorb and emit light effectively, solar cells are a possible application.

Solar cells absorb light and convert it into electricity. However, solar panels are made of silicon, which comes from sand via a highly energy intensive extraction process. If solar cells could be made of a new, alternative semiconductor material such as the one created by the USC Viterbi researchers– a material that could fit more electrons for a given volume (and reducing the thickness of the panels), solar cells could be more efficient–perhaps using one hundred times less material to generate the same amount of energy. This new material, if applied in the solar energy industry, could make solar energy less expensive.

While it is a long road to bring such a class of materials to market, the next step is to recreate this material in an ultra-thin film form to make solar cells and test their performance. "The key contribution of this work," says Ravichandran, "is our new synthesis method, which is a drastic improvement from earlier studies. Also, our demonstration of wide tunability in optical properties (especially band gap) is promising for developing new optoelectronic devices with tunable optical properties."

###

About the USC Viterbi School of Engineering

Engineering Studies began at the University of Southern California in 1905. Nearly a century later, in 2004, the Viterbi School of Engineering received a naming gift from alumnus Andrew J. Viterbi, inventor of the Viterbi algorithm, now the key to cellphone technology and numerous data applications. The school's guiding principles is Engineering +, a coined termed by current dean Yannis C. Yortsos, to use the power of engineering to address the world's greatest challenges. USC Viterbi is ranked among the top engineering programs in the world and enrolls more than 6,500 undergraduate and graduate students taught by 185 tenured and tenure-track faculty, with 73 endowed chairs and professorships.

Media Contact

Amy Bumenthal
[email protected]
917-710-1897
@USC

The Ultimate Guide to Monday’s Eclipse

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Ferroptosis Drives FDXR Disease via NRF2 Disruption

December 23, 2025

Neutrophil-Keratinocyte IL-36 Network Drives Psoriasis Inflammation

December 23, 2025

Selenium Intake Linked to Lower Remnant Cholesterol in Women

December 23, 2025

Patient-Centered Innovations in Thermostable Vaccine Formulations

December 23, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ferroptosis Drives FDXR Disease via NRF2 Disruption

Neutrophil-Keratinocyte IL-36 Network Drives Psoriasis Inflammation

Selenium Intake Linked to Lower Remnant Cholesterol in Women

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.