• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

USC Stem Cell study explores ‘synthetic’ embryonic development with $2.5 million NIH grant

Bioengineer by Bioengineer
April 8, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chris Shinn

Whether in an earthworm or a human being, developmental processes are driven by complex networks of genetically-encoded signals that enable cells to take cues from each other and their environment. To begin unraveling this complexity, USC Stem Cell scientist Leonardo Morsut, PhD, is designing artificial genetic programs to perturb natural signaling networks and study how this inflects embryonic development, with support from a $2.56 million grant from the National Institute of General Medical Sciences at the National Institutes of Health (NIH).

Known as the “Maximizing Investigators’ Research Award” or R35, the highly competitive grant provides five years of support for the nation’s most talented scientific investigators.

Morsut, who is an assistant professor of stem cell biology and regenerative medicine at the Keck School of Medicine of USC, will use the new NIH grant to understand developmental programs by actually building them in his laboratory at the Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC.

To this end, he has already engineered one handy tool: a synthetic version of a naturally occurring cell communication system known as “Notch.” In the naturally occurring Notch system, cells use sensors on their surfaces that recognize particular signals and trigger specific responses. In Morsut’s synthetic Notch or “synNotch” system, he can affix a sensor of his choosing to the surface of a cell–controlling which signal the cell recognizes, as well as how it responds.

Morsut and his collaborators can deliver the chosen signal in a variety of ways: the signal can be presented by another cell, or the signal can be a micro-contact printed onto a surface in a pre-determined pattern.

To complement this powerful “in vitro” system for controlling cell behavior, Morsut’s group has also developed a computer-based “in silico” simulation to predict how signaling networks will drive developmental processes. Both “in vitro” and “in silico,” Morsut has succeeded in directing groups of individual cells to self-organize into multi-layered structures–loosely evoking what happens in the earliest stages of embryonic development.

Building on these discoveries, Morsut’s laboratory will explore how Notch and other signaling networks drive the formation of the early precursors of the vertebrae–a process fundamental to all vertebrates.

In addition, his laboratory will work to develop new synthetic tools to control not only how cells signal to each other, but also how cells adhere to each other. These tools will empower Morsut’s lab to perturb and construct common and stereotypical developmental processes, such as branching growth or loss of cellular adhesion, that underpin the formation of many different organisms and organ systems.

“With this approach that we call ‘understanding by building,’ we hope to advance the field of developmental biology by shedding light on the behavior and logic of how multicellular systems form coherent, functional tissues and organs,” said Morsut. “These insights and tools could advance efforts to control the growth of tissues and organs in the laboratory, as well as to inform early interventions for birth defects and better treatments for a broad array of diseases.”

###

About Keck School of Medicine

Founded in 1885, the Keck School of Medicine of USC is one of the nation’s leading medical institutions, known for innovative patient care, scientific discovery, education, and community service. Medical and graduate students work closely with world-renowned faculty and receive hands-on training in one of the nation’s most diverse communities. They participate in cutting-edge research as they develop into tomorrow’s health leaders. With more than 900 resident physicians across 50 specialty and subspecialty programs, the Keck School is the largest educator of physicians practicing in Southern California.

Media Contact
Tana Watanabe
[email protected]

Original Source

https://stemcell.keck.usc.edu/usc-stem-cell-scientist-awarded-2-5-million-nih-grant-to-explore-synthetic-embryonic-development/

Tags: BiologyCell BiologyDevelopmental/Reproductive BiologyGenesGeneticsGrants/Funding
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025
Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025

Physicists Unravel the Enigma of Mysterious Membrane Dynamics

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Research Explores the Brain as a Potential Target for Type 1 Diabetes Treatments

Macrophage-T Cell Interaction Boosts SLAMF1 in TB Defense

Strawberry Notch 1 Protects Neurons by Regulating Yeats4

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.