• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

USC researcher identifies a new way to treat HIV

Bioengineer by Bioengineer
August 23, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Wan-Lin Wu

Medical treatment that targets human proteins rather than ever-mutating viruses may one day help HIV-positive people whose bodies have built a resistance to "cocktails" currently used to keep them healthy, according to a Keck School of Medicine of USC researcher.

I-Chueh Huang has spent 13 years researching how the human immune system controls viral infections. His lab recently pinpointed a protein variant that can be targeted to prevent the human immunodeficiency virus from harming HIV-positive individuals.

"Most HIV drugs target the virus," said Huang, assistant professor of molecular microbiology and immunology at the Keck School of Medicine, which ranked No. 1 in National Institutes of Health funds received per principal investigator in 2016.

"But the virus is not stable; it always mutates — problematic because the virus can become resistant to effective drugs."

The study, published in the July 3 issue of the Proceedings of the National Academy of Sciences, is a first step toward enabling doctors to direct the body's own immune system to better fend off disease. This method differs from the more traditional method of targeting viruses that may eventually become resistant to specific medical therapies.

"Much more research needs to be done, but we may have identified a new approach to treating acute HIV infection," Huang said.

About 37 million people worldwide have HIV and 20 million received antiviral therapy in 2016, according to the World Health Organization. Although most people are doing well with HIV-suppressing treatment, a growing number of people are experiencing drug resistance.

Preventing viral spread

Huang's lab previously identified a family of proteins that restrict highly contagious viruses — including SARS, the flu, dengue virus and West Nile virus — from viral replication at the early stage of infection.

The new study focused on HIV-1, the most widespread version worldwide. HIV can be classified into R5 and X4 viruses. R5 viruses are exclusively associated with primary infection, and X4 viruses emerge in later stages of HIV diseases in half of HIV carriers. Detection of X4 is an indication that the patient's HIV infection has progressed to a very toxic state.

The Huang Lab identified a novel variant within the previously identified family of proteins. They nicknamed it "Delta 20," an immune system protein that suppresses the most damaging HIV strains, X4, by preventing the virus from infecting cells.

"Our finding will not help develop a vaccine because the focus is on innate immunity rather than the virus," Huang said. "Perhaps one day scientists will create medicine that, like 'HIV cocktails,' have to be taken indefinitely. But the new treatment may be more effective because it is harder for viruses to escape the body's defenses."

Researchers across disciplines at USC are working on multiple methods of attacking wicked problems such as HIV. For example, Paula Cannon at USC Stem Cell is working to edit human genes to create HIV-resistant cells.

###

The study was supported by the National Institutes of Health (P30 DK048522) and the National Institute of Allergy and Infectious Diseases (R01AI100953).

Media Contact

Zen Vuong
[email protected]
213-300-1381
@USC

The Ultimate Guide to Monday’s Eclipse

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Prodrug Florfenicol Amine Targets Resistant Mycobacterium abscessus

October 30, 2025
blank

Young Minds Outperform Expectations, Study Reveals

October 30, 2025

Frontiers Forum Deep Dive: Scientists Race to Unravel Consciousness Amid Rapid Advances in AI

October 30, 2025

Decoding Wild Ophiocordyceps sinensis Genome Reveals Insights

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1291 shares
    Share 516 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mexico’s Health Insurance: Advances, Gaps, and Future Challenges

Revolutionizing Diabetes Care with Carbon Nanoplatforms

Mapping Proteome-wide Selectivity of Diverse Electrophiles

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.