• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

US Naval Research Laboratory ‘connects the dots’ for quantum networks

Bioengineer by Bioengineer
July 9, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chul Soo Kim, US Naval Research Laboratory

WASHINGTON — Researchers at the U.S. Naval Research Laboratory (NRL) developed a new technique that could enable future advancements in quantum technology.

The technique squeezes quantum dots, tiny particles made of thousands of atoms, to emit single photons (individual particles of light) with precisely the same color and with positions that can be less than a millionth of a meter apart.

“This breakthrough could accelerate the development of quantum information technologies and brain-inspired computing,” said Allan Bracker, a chemist at NRL and one of the researchers on the project.

In order for quantum dots to “communicate” (interact), they have to emit light at the same wavelength. The size of a quantum dot determines this emission wavelength. However, just as no two snowflakes are alike, no two quantum dots have exactly the same size and shape — at least when they’re initially created.

This natural variability makes it impossible for researchers to create quantum dots that emit light at precisely the same wavelength [color], said NRL physicist Joel Grim, the lead researcher on the project.

“Instead of making quantum dots perfectly identical to begin with, we change their wavelength afterwards by shrink-wrapping them with laser-crystallized hafnium oxide,” Grim said. “The shrink wrap squeezes the quantum dots, which shifts their wavelength in a very controllable way.”

While other scientists have demonstrated “tuning” of quantum dot wavelengths in the past, this is the first time researchers have achieved it precisely in both wavelength and position.

“This means that we can do it not just for two or three, but for many quantum dots in an integrated circuit, which could be used for optical, rather than electrical computing,” Bracker said.

The wide breadth of researcher expertise and science assets at NRL allowed the team to test various approaches to making this quantum dot breakthrough in a relatively short amount of time.

“NRL has in-house facilities for crystal growth, device fabrication, and quantum optical measurements,” Grim said. “This means that we could immediately coordinate our efforts to focus on rapidly improving the material properties.”

According to Grim and Bracker, this milestone in the manipulation of quantum dots could lay the groundwork for future strides in a number of areas.

“NRL’s new method for tuning the wavelength of quantum dots could enable new technologies that use the strange properties of quantum physics for computing, communication and sensing,” Bracker said. “It may also lead to ‘neuromorphic’ or brain-inspired computing based on a network of tiny lasers.”

Applications in which space and power-efficiency are limiting factors may also benefit from this breakthrough approach, researchers said.

###

This research was published in the journal Nature Materials, “Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance.”

Media Contact
Mary Estacion
[email protected]

Original Source

https://www.nrl.navy.mil/news/node/794

Related Journal Article

http://dx.doi.org/10.1038/s41563-019-0418-0

Tags: Chemistry/Physics/Materials SciencesMolecular PhysicsNanotechnology/MicromachinesneurobiologyOptics
Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Impact of resuscitation with 100% oxygen during physiological-based cord clamping or immediate cord clamping on lung inflammation and injury as a headline for a science magazine post, using no more than 8 words

Rewrite Illuminating photoreceptors: TGFβ signaling modulates the severeness of retinal degeneration as a headline for a science magazine post, using no more than 8 words

Partial Flood Defenses Heighten Risks, Inequality in Cities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.