• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Unraveling the mysteries of glassy liquids

Bioengineer by Bioengineer
September 22, 2023
in Chemistry
Reading Time: 3 mins read
0
Map of the spatial relaxation in a two-dimensional liquid model.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Glass, despite its apparent transparency and rigidity, is a complex and intriguing material. When a liquid is cooled to form a glass, its dynamics slows down significantly, resulting in its unique properties.

Map of the spatial relaxation in a two-dimensional liquid model.

Credit: Tahaei et al 2023, Physical Review X (DOI: 10.1103/PhysRevX.13.031034)

Glass, despite its apparent transparency and rigidity, is a complex and intriguing material. When a liquid is cooled to form a glass, its dynamics slows down significantly, resulting in its unique properties.

This process, known as “glass transition”, has puzzled scientists for decades. But one of its intriguing aspects is the emergence of “dynamical heterogeneities,” where the dynamics become increasingly correlated and intermittent as the liquid cools down and approaches the glass transition temperature.

In a new study, researchers propose a new theoretical framework to explain these dynamical heterogeneities in glass-forming liquids. The idea is that relaxation in these liquids occurs through local rearrangements, which influence each other via  elastic interactions. By investigating the interplay between local rearrangements, elastic interactions, and thermal fluctuations, the researchers have formulated a comprehensive theory for the collective dynamics of these complex systems.

The study is a collaboration between Professor Matthieu Wyart at EPFL and his colleagues at Max Planck Institute in Dresden, the ENS, the Université Grenoble Alpes, and the Center for Systems Biology Dresden. It is now published in Physical Review X.

The team developed a “scaling theory” that explains the growth of the dynamical correlation length observed in glass-forming liquids. This correlation length is linked to “thermal avalanches”, which are rare events induced by thermal fluctuations, which then trigger a subsequent burst of faster dynamics.

The study’s theoretical framework also provides insights into the Stoke-Einstein breakdown, a phenomenon where the viscosity of the liquid becomes uncoupled from the diffusion of its particles.

To validate their theoretical predictions, the researchers conducted extensive numerical simulations in various conditions. These simulations supported the accuracy of their scaling theory and its ability to describe the observed dynamics in glass-forming liquids.

The study not only deepens our understanding of glass dynamics but also suggests a new handle to tackle the properties of some other complex systems where the dynamics is intermittent and jerky- features known to occur in a range of situations, from the brain’s activity or the sliding between frictional objects.

“Our work connects the growth of the dynamical correlation length in liquids to avalanche-type relaxations, well studied, for example, in the context of disordered magnets, granular materials, and earthquakes,” says Matthieu Wyart. “As such, this approach builds unexpected bridges between other fields.  Our description of how avalanches are affected by exogeneous fluctuations, including thermal ones, may thus be of more general interest.”

Reference

Ali Tahaei, Giulio Biroli, Misaki Ozawa, Marko Popović, Matthieu Wyart. Scaling description of dynamical heterogeneity and avalanches of relaxation in glass-forming liquids. Physical Review X, 21 September 2023. DOI: 10.1103/PhysRevX.13.031034



Journal

Physical Review X

DOI

10.1103/PhysRevX.13.031034

Article Title

Scaling Description of Dynamical Heterogeneity and Avalanches of Relaxation in Glass-Forming Liquids

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Photocatalytic RNA Profiling Enables Multi-Omics Analysis

September 16, 2025
blank

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

September 16, 2025

“Shaking Up Electronics: How ‘Wiggling’ Atoms Could Shrink Devices and Boost Efficiency”

September 16, 2025

Rethinking the Cosmological Constant

September 16, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Federal Funding Drives Breakthroughs in Cancer Research, AACR Report Shows

Engineering Topological Chiral Transport in Flat-Band Ultracold Atoms

Treating Anal Lesions Lowers Invasive Cancer Risk in HIV

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.