• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Unraveling the mechanism of skin barrier formation

Bioengineer by Bioengineer
April 14, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have identified the gene responsible for generating acylceramide, the key lipid in forming the skin barrier that protects us from pathogens, allergens and other harmful substances. This finding could prove crucial in developing medicines for treating atopic dermatitis and ichthyosis.

Defects of the skin barrier can trigger skin diseases such as atopic dermatitis, which is said to afflict about 10 percent of the population in some developed countries. Acylceramide, a lipid only found in skin, plays a pivotal role in forming this barrier. Although most of the genes needed to generate this special lipid have been recently identified, the gene responsible in the final step to produce acylceramide has been missing. Finding the last piece in the puzzle, therefore, was essential for elucidating the skin barrier's molecular mechanism.

The team led by Professor Akio Kihara at Hokkaido University established a cell system that produces the acylceramide precursor ω-hydroxyceramide and used it to evaluate the activity of several candidate genes to produce acylceramide. The research methodology addressed a long-standing hurdle in experiments using epidermal keratinocytes which caused the inefficiency of gene delivery to the cells. By using other types of cultured cells transfected with the genes required for other steps of acylceramide synthesis, the team has overcome the issue and tested the function of the candidate genes.

As a result, the team succeeded in finally identifying the key gene as PNPLA1. The researchers also found evidence that suggests the lipid triglyceride acts as a linoleic acid donor. Furthermore, they discovered that mutant PNPLA1 proteins found in patients with ichthyosis, a serious genetic skin disorder characterized by dry and scaly skin, show reduced or no enzyme activity.

As there is no curative treatment for atopic dermatitis, patients are currently given only symptomatic therapies. No treatment has been established for ichthyosis. "To better treat such patients, it is essential to restore the functions of the skin barrier," says Akio Kihara. "Having unraveled the molecular mechanism of acylceramide synthesis, our study should enable the search for compounds that boost acylceramide synthesis and therefore restore the skin barrier."

###

This study was conducted as a part of a project under the Advanced Research and Development Programs for Medical Innovation (AMED-CREST) of the Japan Agency for Medical Research and Development.

Ohno Y., Kamiyama N., Nakamichi S., Kihara A., PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide, Nature Communications, March 1, 2017. DOI: 10.1038/NCOMMS14610

Media Contact

Naoki Namba
81-117-068-034
@hokkaido_uni

http://www.oia.hokudai.ac.jp/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Scalable Synthesis Unlocks Saxitoxin and Analogs

August 26, 2025

Sex-Specific Genetic Links to Major Depression Revealed

August 26, 2025

Cell-Based Vaccine Enhances Liver Cancer Therapy, Slowing Disease Progression in Patients

August 26, 2025

Very Low Birth Weight Impacts Japanese Children’s Visual Perception

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scalable Synthesis Unlocks Saxitoxin and Analogs

Sex-Specific Genetic Links to Major Depression Revealed

Cell-Based Vaccine Enhances Liver Cancer Therapy, Slowing Disease Progression in Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.