• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Unlocking the potential of silicon anode materials for commercialized batteries

Bioengineer by Bioengineer
September 28, 2023
in Chemistry
Reading Time: 2 mins read
0
Professor Jaephil Cho and his research team
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a groundbreaking review published in Nature Energy, Professor Jaephil Cho from the School of Energy and Chemical Engineering at UNIST presents an analysis protocol to evaluate silicon cathode materials applicable to commercialized batteries. The study delves deep into the characteristics and challenges surrounding silicon anode materials—the focus of significant attention as secondary battery components.

Professor Jaephil Cho and his research team

Credit: UNIST

In a groundbreaking review published in Nature Energy, Professor Jaephil Cho from the School of Energy and Chemical Engineering at UNIST presents an analysis protocol to evaluate silicon cathode materials applicable to commercialized batteries. The study delves deep into the characteristics and challenges surrounding silicon anode materials—the focus of significant attention as secondary battery components.

Silicon has emerged as a promising alternative to conventional graphite anodes in high-energy lithium-ion batteries due to its exceptional gravimetric capacity. However, intrinsic issues such as severe volume expansion during cycling have hindered the widespread use of Si anodes in battery development. While laboratories have made tremendous progress in addressing these issues, most Si-containing batteries used in industry—where Si anodes are composed of Si suboxides or Si-C composites—are only able to incorporate limited amounts of silicon.

The research team’s comprehensive analysis explores crucial factors that influence the practical energy density of silicon-containing batteries. It examines phenomena such as electrode swelling and cut-off voltage during cell operation while considering calendar life, safety concerns, and cost implications—all essential aspects that significantly impact practical cell design.

Furthermore, the paper proposes testing protocols aimed at evaluating the feasibility and viability of newly developed silicon anodes. These protocols offer valuable insights into ensuring optimal performance, efficiency, durability, and safety when incorporating these advanced materials into commercial battery applications.

One key finding highlighted by Professor Cho’s team is that reducing the size of silicon particles to less than 5 nm while uniformly dispersing them within conductive carbon particles holds great promise for overcoming existing limitations. Recent advancements reported by researchers involved depositing raw materials on carbon composite particles through gas deposition—a synthesis technology capable of reducing particle sizes below 1 nm. This innovative approach demonstrated initial efficiencies exceeding 90% with significantly improved lifespan characteristics.

“The evaluation methods currently reported in specialized journals for silicon anode materials are somewhat limited, making it challenging to determine their commercial viability,” stated Professor Cho. The proposed analysis protocol aims to bridge this gap and provide a comprehensive framework for assessing the practical potential of these materials in commercialized batteries.

This review paper, invited by Nature Energy—an authoritative journal in the field of energy—was co-authored by Professor Jaekyung Sung from Gyeongsang National University. Released on August 28, this publication marks a significant contribution to advancing battery technology and propelling us closer towards achieving efficient and commercially viable silicon-based anodes.

Journal Reference
Namhyung Kim, Yujin Kim, Jaekyung Sung, and Jaephil Cho, “Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries,” Nature Energy, (2023).



Journal

Nature Energy

Article Title

Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries

Article Publication Date

28-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1280 shares
    Share 511 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    188 shares
    Share 75 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Ssp4’s Role in Foodborne Spore DNA Defense

What Your Eyes Reveal About Aging and Heart Health: Insights from New Research

Tackling Medical Imaging Data Gaps with Heterosync

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.