• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

University of Tartu researcher receives prestigious ERC Starting Grant to study the arms race between bacteria and viruses

Bioengineer by Bioengineer
September 6, 2023
in Biology
Reading Time: 2 mins read
0
Hedvig Tamman in the laboratory
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hedvig Tamman in the laboratory

Credit: by Andres Ainelo

The two-way defence mechanisms of bacteria and phages, viruses of the bacteria, can offer a solution to antibiotic resistance problems. Hedvig Tamman, Associate Professor of Genetics at the Institute of Molecular and Cell Biology, University of Tartu, received the Starting Grant from the European Research Council (ERC) to study the microbial arms race.

Antibiotic resistance is a growing problem in the treatment of infectious diseases caused by bacteria. Bacteria-attacking viruses can offer new solutions, for example, for developing antibiotics and their additives. The prospect of using phages in the fight against pathogenic bacteria has long been recognised, but their very high specificity and unpredictable reproduction have limited their wider use in medicine.
Tamman’s study bridges several gaps in the research on bacteria, phages and their interaction. “As bacteria and phages have co-evolved since the beginning of time, there is a kind of arms race between them – phages develop a mechanism to overcome all the bacterial defence systems,” said Tamman.
On the one hand, the researcher studies how bacteria defend themselves against phages. For example, bacteria have defence mechanisms against phages and other stressors, such as the toxin-antitoxin system in chromosomes and the stringent response – the latter puts the bacterium, when stressed, into a kind of hibernation. This helps it survive the antibiotic attack and supports the development and spread of resistance. On the other hand, Tamman hopes to discover what helps the phages paralyse the bacterial stringent response.
“Although the bacterium Pseudomonas putida that I study is not medically important, it is related to human and plant pathogens. Knowing how phages fight this bacterium gives us ideas that could help us fight bacterial diseases in the future,” Tamman said.
The ERC Starting Grant for early-stage researchers is €1.5 million over five years. The project “Deciphering stringent response proteins and toxin-antitoxin systems in the arms race between bacteria and phages” (abbreviation PhaBacArms) starts at the beginning of 2024 and runs until the end of 2028.
Hedvig Tamman defended her PhD in genetics at the University of Tartu in 2016. Her doctoral thesis dealt with the functionality of chromosomal toxin-antitoxin systems of the bacterium Pseudomonas putida. From 2016 to 2021, Tamman was a postdoctoral researcher at the Free University of Brussels, where she worked on determining bacterial stress responses and the structure of proteins involved in these responses.



Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Cold Sensitivity in Mussaenda anomala

Decoding Cold Sensitivity in Mussaenda anomala

November 10, 2025
Gene-by-Gene Editing Achieved in Phages with Fully Synthetic DNA

Gene-by-Gene Editing Achieved in Phages with Fully Synthetic DNA

November 10, 2025

Dual Inhibition of Cooperative Motor Proteins Emerges as a Promising Strategy to Kill Cancer Cells

November 10, 2025

Incorporating Frailty and Age Metrics to Enhance Pancreatic Cancer Therapies

November 10, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gamma Irradiation and Cultivation Impact on Carnation Growth

Tailored Cultivar Responses to Highland Potato Late Blight

Decoding Cold Sensitivity in Mussaenda anomala

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.