• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

University of Missouri researchers receive $1.3 million NIH grant to…

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo courtesy of Jianlin Cheng.

Jianlin Cheng has been in the business of protein structure prediction since before coming to the University of Missouri College of Engineering in 2007. And thanks to new funding from the National Institutes of Health, he's looking at ways to take his research even further.

Cheng, an associate professor of computer science, and his co-PI — John Tanner, professor of biochemistry at MU — recently received a four-year, $1.3 million grant from NIH (project number 2R01GM093123-05A1) to continue their research on integrated prediction and validation of protein structures.

Protein structure prediction is important, particularly in the medical community. The scientific community has sequenced millions of proteins to date but only has been able to experimentally define the structure of less than 0.1 percent of those proteins. Knowing the structure is vitally important because the 3D structure of a protein defines its function, and greater, more accurate knowledge of these structures could help with breakthroughs in several areas, including drug discovery, protein engineering, new protein design, disease detection, precision medicine and more.

Currently, Cheng and Tanner are working with the enzyme superfamily aldehyde dehydrogenase (ALDH), which is involved in a wide array of biological processes. Its mutations can cause potentially serious problems, and it may be a marker indicating a higher cancer risk.

"If a mutation happens to that enzyme, it can cause many diseases," Cheng said. "So we're trying to use our tool to accurately predict how one mutation, the change of one amino acid, may change the conformation of proteins in that family. That can help explain many metabolic disorders.

"(ALDH was chosen) because of its medical significance and because Dr. Tanner has been working with it for many years. He has techniques to study every possible mutation."

Cheng developed a program, called MULTICOM, which he uses to computationally predict the 3D structure of protein sequences. After Cheng predicts a structure, Tanner puts together the same protein sequence in his lab and runs tests to check the accuracy of Cheng's predictions.

On average, Cheng's prediction software can predict good structures for about 60-70% proteins. The goal of this new funding is to take what's called deep learning — which uses several layers of processing to model complex structures — and apply it to protein structure prediction in order to increase the accuracy.

If that breakthrough is reached, it could help open the door for advances in almost any area that deals with protein structures — including medicine, plant sciences, veterinary medicine, personalized healthcare and more. In particular, the accurate prediction of the effects of a genetic mutation on protein structure could help clinicians develop personalized treatments for patients.

"It's the first time anyone's proposed this technique to address this problem," Cheng stated. "The idea is in other fields, people use this deep learning technique, and it's one of the most efficient techniques for cognition problems like recognizing facial images or speech recognition. We're trying to develop this kind of technique to address how the protein automatically goes from the sequence to folding into a 3D structure."

###

Media Contact

Ryan Owens
[email protected]
573-882-1617
@mizzounews

http://www.missouri.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Advancements in AAV Microdystrophin Therapy for Duchenne Muscular Dystrophy

November 16, 2025

Advanced Technique Enhances Proteomics with Bioorthogonal Tagging

November 16, 2025

Inert Gas Injection Depth and Air Sealing Impact

November 16, 2025

Single-Port Robotic Surgery: Revolutionizing Urology Today

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancements in AAV Microdystrophin Therapy for Duchenne Muscular Dystrophy

Advanced Technique Enhances Proteomics with Bioorthogonal Tagging

Inert Gas Injection Depth and Air Sealing Impact

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.