• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

University of Guelph develops effective way to replenish threatened plants

Bioengineer by Bioengineer
April 22, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Guelph researchers used advanced cloning techniques to give the threatened Hill’s thistle a fighting chance.

IMAGE

Credit: University of Guelph

From two seeds grew a thousand plants.

University of Guelph researchers used advanced cloning techniques to give the threatened Hill’s thistle a fighting chance.

This cutting-edge propagation method could rejuvenate the population of other threatened and endangered plant species, said lead researcher Prof. Praveen Saxena, Department of Plant Agriculture.

Published recently in the journal PLOS ONE, the three-year study used the CPR (Conservation, Propagation, Redistribution) method to preserve the genetic material of germ cells, known as germplasm, and use that material to produce large quantities of plants in a controlled environment.

“A very small amount of plant material can produce large numbers of plants for conservation purposes,” said Saxena, who heads the Gosling Research Institute for Plant Preservation (GRIPP) at U of G.

The conventional method of planting seeds to reintroduce Hill’s thistle has shown limited success due to low flowering and low germination rates.

“The major goal of our research is to preserve threatened and endangered plant biodiversity through the application of in vitro culture technologies that can be used to prevent species loss in the field,” said, Saxena, who worked on the study with fellow GRIPP researchers Bita Sheikholeslami, Christina Turi and Mukund Shukla. “We wanted to test our model for its practical utility in a real-life situation, when lab-generated plants are transferred to harsh natural sites.”

Parks Canada provided the team with 29 seeds, of which only two germinated. Those two seeds sprouted enough plant material to grow 1,000 plants in the lab; 300 were transplanted back into the Bruce Peninsula National Park in southern Ontario.

The 300 plants were planted in 12 sites in the national park in summer 2017. The survival rate ranged from 67 to 99 per cent, with nearly all of these plants surviving the winter. Shoot regeneration and flowering occurred in most sites.

“Micropropagation is a good approach for Hill’s thistle because germplasm can be stored for long-term in our GRIPP facility to conserve the limited genetic diversity, while the threats to the declining populations can be managed through reintroduction of micropropagated plants,” said Shukla. “This extensive study provides solid evidence of the usefulness of in vitro-grown plants.”

The Hill’s thistle grows in scarce Great Lakes areas known as open alvar grasslands. In Ontario, the flowering plant, which supports the life cycles of rare bees and other pollinators, is found mostly on the Bruce Peninsula and Manitoulin Island.

It is listed as a threatened plant species in the province, and one likely to become endangered if steps are not taken to protect it. A lack of suitable habitat due to the encroachment of trees and shrubs, as well as cottage development and quarrying activity in its natural habitat, have contributed to the decline.

“In general, plant biodiversity is important for human lives, as well as animals and microbes, as it is critical to their survival because of the oxygen, food and medicine they provide,” Saxena said. “A complete ecological system is not possible without plant biodiversity. We are optimistic that the CPR model will prove to be an important tool in saving plant diversity, including important food and medicinal crops.”

###

Praveen Saxena contact:

[email protected]

(519)824-4120 ext. 52495

Media Contact
Prof. Praveen Saxena
[email protected]

Original Source

https://news.uoguelph.ca/2020/04/u-of-g-develops-effective-way-to-replenish-threatened-plant-species/

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0231741

Tags: BiodiversityBiologyCell BiologyEcology/EnvironmentGene TherapyGeneticsPlant SciencesPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Link Between Minor and Visual Hallucinations in Parkinson’s

SARS-CoV-2 Survival and Spread in Aerosol Chamber

Enhanced Fe-Co/NF Electrode Enables Sensitive Nitrite Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.