• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 10, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

University launches isolated power supply chip with new design

Bioengineer by Bioengineer
March 2, 2021
in Science News
Reading Time: 1 min read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: PAN Dongfang

Recently, research group led by Professor CHENG Lin from School of Microelectronics, University of science and technology of China has made significant achievements in the field of fully integrated isolated power chip design. They proposed a chip based on glass fan-out wafer-level package (FOWLP), achieving 46.5% peak transformation efficiency and 50mW/mm2 power density.

Compared with the traditional isolated power supply chip, this new design interconnects the receiving and transmitting chips through the micro transformer made of the rewiring layer, showing no need of additional transformer chips. In this way, it lowered the need for three or even four chips in the existing chip design, so as to greatly improve the efficiency of isolated power supply.

In addition, they proposed a grid voltage control technology with variable capacitor, which maintains the grid peak voltage in the best safe voltage range even in a wider supply voltage range.

This design improves the conversion efficiency and power density of the chip effectively, providing a new solution for the design of isolated power chip in the future.

###

This work is published at IEEE International Solid State Circuits Conference (ISSCC), known as the Olympic Games in the field of integrated circuit design, and selected as demo demonstration at the meeting.

Media Contact
Jane FAN Qiong
[email protected]

Tags: Electrical Engineering/ElectronicsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Nanoagent Targets HER2 for Cancer Antibody Delivery

January 10, 2026

Pharmacist-Led Deprescribing Boosts Outcomes for Seniors

January 10, 2026

Tackling Non-Communicable Diseases in Rural Bangladesh’s Clinics

January 10, 2026

MSLN Activates EGFR-ERK1/2 to Drive Liver Metastasis

January 10, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanoagent Targets HER2 for Cancer Antibody Delivery

Pharmacist-Led Deprescribing Boosts Outcomes for Seniors

Tackling Non-Communicable Diseases in Rural Bangladesh’s Clinics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.