• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Unique communication strategy discovered in stem cell pathway controlling plant growth

Bioengineer by Bioengineer
March 22, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jackson Lab, CSHL

Cold Spring Harbor, NY — A team of plant geneticists at Cold Spring Harbor Laboratory (CSHL) has identified a protein receptor on stem cells involved in plant development that can issue different instructions about how to grow depending on what peptide (protein fragment) activates it.

This is the first such multi-functional receptor found to work in this way to control plant development. The new findings obtained by CSHL Professor David Jackson and colleagues may have important implications for efforts to boost yields of essential food crops such as corn and rice.

Plant growth and development depend on structures called meristems – reservoirs in plants that contain stem cells. When prompted by peptide signals, stem cells in the meristem develop into any of the plant's organs – roots, leaves, or flowers, for example. These signals generally work like a key (the peptide) fitting into a lock on the surface of a cell (the protein receptor). The lock opens momentarily, triggering the release of a chemical messenger inside the cell. The messenger carries instructions for the cell to do something, such as grow into a root or flower cell or even stop growing altogether. Conventionally, one or more peptides fit into a receptor to release a single type of chemical messenger.

Jackson and colleagues, however, recently discovered that a protein receptor they first identified in 2001, called FEA2, can can trigger the release of one of two distinct chemical messengers, CT2 or ZmCRN, depending on which of two peptides, ZmCLE7 or ZmFCP1, switches it on. Receptors that release more than one messenger are rare. Jackson says this is the first one discovered that plays a role in crop production.

FEA2 is an important receptor in the CLAVATA signaling pathway, which is known to activate stem cells. Jackson, as well as his CSHL colleague Professor Zachary Lippmann, have previously tweaked this pathway to manipulate the meristem to boost the yield of prominent crop species including tomato, corn, and mustard.

Jackson and his team believe that FEA2 is bound to two different co-receptors, each of which acts as the "lock" for one of the two peptide "keys." Future research will explore how the two different peptide signals are translated by FEA2 into distinct chemical messages.

"We think the way this stem cell signaling pathway works is fundamental to all plants," Jackson says. "We have shown that, in theory, the pathways that control stem cells can be modified to make bigger fruits or more seeds. With this study we've learned something new about how these pathways work, giving plant scientists another tool for improving crop yields."

###

Funding

National Institute of Food and Agriculture, National Science Foundation, Next-Generation BioGreen 21 Program, Human Frontier Science Program

Citation

Je, B.I., et al., "The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors" appeared online in eLife March 15, 2018.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,100 people including 600 scientists, students and technicians. The Meetings & Courses Program annually hosts more than 12,000 scientists. The Laboratory's education arm also includes an academic publishing house, a graduate school and the DNA Learning Center with programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Media Contact

Peter Tarr
[email protected]
516-367-5055
@cshl

Cold Spring Harbor Laboratory – Advancing the frontiers of biology through education and research

Share12Tweet7Share2ShareShareShare1

Related Posts

Mapping meQTLs Reveals Sperm DNA Methylation in Cattle

September 1, 2025

Human Impact Alters Habitat of North Chinese Leopard

September 1, 2025

Diabetes Prevalence Linked to Low Back Pain: Analysis

September 1, 2025

New Study Uncovers Hyperactive Immune Response in Chronic Fatigue Syndrome (ME/CFS) Patients

September 1, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Physics-Informed Deep Learning Solves Complex Discontinuous Inverse Problems

Testosterone Levels Linked to HDL and Immune Cells

NiFe2O4-Bamboo Carbon Composite: A Game-Changer for Dye Solar Cells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.