• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Unique centromere type discovered in the European dodder

Bioengineer by Bioengineer
January 27, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jiri Macas


České Budějovice/Gatersleben, 27.01.2020 Whenever the European dodder, Cuscuta europaea, is under scientific scrutiny, it usually is due to its lack of chloroplasts and its concomitant parasitic lifestyle. However, since the beginning of this year its chromosomes became the new centre of attention, when researchers discovered a new type of centromere inherent to C. europaea. Whilst the positioning of the centromeres on the chromosome is normally determined by the locations of CENH3 histones, the centromeres of C. europaea were positioned in some chromosomal regions also independently from the plant’s occurrence of CENH3.

The European dodder Cuscuta europaea is mainly known as a parasitic plant – instead of doing photosynthesis, it grows on other plants and lives of their products. In some cases, it even lives as an epiparasite, living off related plant species. When looking into the plants’ cytogenetics, researchers from the Biology Centre of the Czech Academy of Sciences in Ceské Budejovice, in collaboration with researchers from the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), recently discovered that C. europaea showcases a unique kind of centromere.

The centromere is a region on a chromosome, at which the kinetochore assembles. This, in turn, guides the attachment of the microtubules of the spindle apparatus during the cellular processes mitosis and meiosis. In most eukaryotic species, the positioning of the centromere is determined by a centromere-specific histone H3 variant called CENH3, which also plays an essential role in the formation and function of kinetochores. Based on the distribution of centromeres on the chromosome, species are thought of as having either monocentric or holocentric centromere types. In monocentric species, CENH3 and thus centromere activity is confined to a single region per chromosome, whilst in holocentric species, both are found along the entire length of the chromosome.

In order to investigate traits associated with the transition from monocentric to holocentric chromosome organisation, researchers compare the phylogenetics of related species with differing centromere types. Especially species of the genus Cuscuta are already well documented. However, when investigating C. europaea as an additional representative holocentric species, the scientists came across unexpected discrepancies. Instead of creating the expected signals along the entire chromosome, in situ immunodetection patterns showed that CENH3 occurred in up to three distinct regions per chromosome. Later, super-resolution microscopy revealed that the centromeres still showed typical holocentric activity, apparently independent of the unusual CENH3 distribution, proving that a new type of centromere had been found.

To date, only few species showing no correlation between CENH3 and kinetochore functionality, mainly holocentric insects which are lacking CENH3 genes, have been found. But through the discovery of C. europaea‘s unique centromere type, this short list has now been extended by one already rather exceptional parasitic plant, which will continue to inspire further research.

###

Original publication: Oliveira et al. (2020) Mitotic spindle attachment to the holocentric chromosomes of Cuscuta europaea does not correlate with the distribution of CENH3 chromatin; Front. Plant Sci.

Media Contact
Dr. Andreas Houben
[email protected]
49-394-825-486

Related Journal Article

http://dx.doi.org/10.3389/fpls.2019.01799

Tags: AgricultureBiologyCell BiologyEvolutionGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Adipose Progenitor Cell Variations in Bovine Fats

Adipose Progenitor Cell Variations in Bovine Fats

November 30, 2025

Alien Nudibranch’s Unique Prey and Nematocyst Dynamics

November 30, 2025

Identifying Crustacyanin Gene Family in Neocaridina Denticulata

November 30, 2025

Varied Genetic Resistance to Key Bacterial Pathogen in Trout

November 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    66 shares
    Share 26 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tibial Nerve Techniques Boost Diabetic Neuropathy Recovery

Exploring West Africa’s Health Policy Collaboration Networks

Adipose Progenitor Cell Variations in Bovine Fats

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.