• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UNH research finds seacoast roads under new threat from rising sea level

Bioengineer by Bioengineer
June 1, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Rebecca Zeiber/N.H. Sea Grant

DURHAM, N.H. – Research out of the University of New Hampshire has found that some roads, as far as two miles from the shore, are facing a new hazard that currently cannot be seen by drivers – rising groundwater caused by increasing ocean water levels.

Researchers have identified sections of specific New Hampshire seacoast roads that are the most vulnerable as groundwater levels continue to rise. They include the heavily traveled Route 286 in Seabrook and Gosling Road in Portsmouth. Without drastic improvements to these routes, at or below the pavement surface, motorists can expect segments of these roadways to deteriorate more quickly, require more maintenance and be closed for longer periods of time, according to a study recently published in Transportation Research Record.

"Previous road vulnerability studies have looked at road surface flooding, but groundwater has not been addressed," said Jayne Knott, a civil engineering doctoral candidate in UNH's

College of Engineering and Physical Sciences and lead author of the study. "We found that the effects of surface water flooding on roads occur within a mile of the coast, and groundwater rise effects can occur more than twice that, sometimes all the way to Pease Tradeport."

Groundwater levels are higher than sea levels and that drives the groundwater discharge to the ocean. But as sea levels begin to rise, this forces groundwater to slowly move up to maintain the equilibrium, inching closer to the pavement base layers that need to stay dry to defend their strength.

"The worst enemy of pavement is water," says Jo Daniel, professor of civil and environmental engineering, director of UNH's Center for Infrastructure Resilience to Climate, and co-author on the study. "If the soil and substrate under the pavement get wet, then the strength that we had counted on to carry the traffic isn't there anymore. So the pavement develops ruts and cracks, allowing more water to get into the underlying layers which makes the situation worse and closing roads for long periods of time to dry out impacting both commuters and tourists."

For the study, the research team examined the cross-section data for the most endangered sections of five Seacoast roads — Spaulding Turnpike, Gosling Road, Route 286, Route 101 and Middle Street. Highways are usually built more stout with thicker cross-sections of materials to withstand heavier traffic, while smaller town roads are sometimes little more than layers of pavement over shallow depths of crushed gravel. The thickness of the pavement base layers provides a buffer that protects the road as groundwater rises. The roads where groundwater is already close to the surface are the ones that will likely be affected first, although local geology, topography, soil type and drainage can also influence this.

Researchers then compared the N.H. Department of Transportation (NHDOT) road cross-section data with current and projected groundwater levels given various sea level rise scenarios ranging from one foot by 2030 to 6.6 feet by the year 2100. The results indicate that although Route 101 and the Spaulding Turnpike will probably not have many adverse issues by rising groundwater until late in this century, both Route 286 — an emergency evacuation route — and Gosling Road are likely to be some of the first roads affected.

###

This research was supported by New Hampshire Sea Grant, New Hampshire Seacoast Transportation Climate Working Group, New Hampshire Department of Transportation, New Hampshire Department of Environmental Services, Infrastructure and Climate Network, and the UNH Center for Infrastructure Resilience to Climate.

The University of New Hampshire is a flagship research university that inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top ranked programs in business, engineering, law, liberal arts and the sciences across more than 200 programs of study. UNH's research portfolio includes partnerships with NASA, NOAA, NSF and NIH, receiving more than $100 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

Media Contact

Robbin Ray
[email protected]
603-862-4864
@unhresearchnews

http://www.unh.edu/news

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Polyherbal Remedies Alleviate CCl4-Testicular Toxicity

November 13, 2025
blank

Optimizing Melanin Production from Endophytic Pseudomonas

November 13, 2025

Enhancing State-of-Charge Estimation in Li-ion Batteries

November 13, 2025

Uncovering Missing Heritability in Human Traits

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polyherbal Remedies Alleviate CCl4-Testicular Toxicity

Optimizing Melanin Production from Endophytic Pseudomonas

Enhancing State-of-Charge Estimation in Li-ion Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.