• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Understanding X-chromosome silencing in humans

Bioengineer by Bioengineer
December 15, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image credit: Céline Vallot, Paris Diderot University.

Researchers have discovered new insights into how one of the two X-chromosomes is silenced during the development of female human embryos and also in lab-grown stem cells. X-chromosome silencing is essential for proper development and these findings are important for understanding how the activity of the X-chromosome is regulated to ensure the healthy development of human embryos.

Female cells have two X-chromosomes. One X-chromosome is shut down in the earliest stages of development preventing the duplicated expression of genes from both X-chromosomes. Previous work using mouse embryos showed that a long RNA molecule called Xist coats regions of the silenced X-chromosome. By latching on to the DNA, Xist recruits proteins that shut down the chromosome. However, although XIST is expressed in human embryos, X-chromosome silencing isn't triggered until a few days later. The different observation in mouse and human embryos suggests that XIST is unable to fulfil the same role in humans as in mouse development. Until now, it was unclear why XIST does not inactivate the X-chromosome in human embryos, or what triggers X-chromosome silencing.

Researchers at the Paris Diderot University, Institut Curie and the Babraham Institute report today in Cell Stem Cell that a second long RNA molecule, XACT, which exists in humans but not in mice, accumulates with XIST on active X-chromosomes in human embryos. The two RNAs do not overlap; instead XACT and XIST occupy large and distinct territories on the X-chromosome.

Strikingly, unspecialised 'naïve' human embryonic stem cells show the same pattern of XACT and XIST accumulation on active X-chromosomes, which suggests that this important epigenetic feature of embryo development is conserved in stem cells cultured in the laboratory. By monitoring the artificial induction of XACT activity in stem cells, the researchers suggest that XACT could restrain XIST activity before chromosome silencing occurs. This interference might explain why XIST is unable to shut down the X-chromosome until XACT activity is diminished at later stages of human embryo development.

Dr Peter Rugg-Gunn, an author on the research paper and research group leader at the Babraham Institute, explained: "This important paper might provide the long sought-after explanation for why XIST appears unable to trigger X-chromosome inactivation during the earliest stages of human development. It exemplifies that mechanisms of epigenetic regulation can vary substantially between species, and that long RNA molecules can contribute to these variations. It is also very exciting that key aspects of X-chromosome regulation appear to be retained in 'naïve' embryonic stem cells because that opens up the possibility of using stem cells to ask new questions about X-chromosome inactivation, such as how XACT might prevent XIST function."

###

This research was funded through grants provided to Dr Peter Rugg-Gunn by the Wellcome Trust and the Medical Research Council (MRC). The Babraham Institute is strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Media Contact

Louisa Wood
[email protected]
44-012-234-96230
@babrahaminst

http://www.babraham.ac.uk/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Tidal Volume and Peak Pressure: Key Predictors in Jet Ventilation

Tidal Volume and Peak Pressure: Key Predictors in Jet Ventilation

October 23, 2025
TU Graz Explores Preservation of Endangered Cultural Heritage in the Western Himalayas

TU Graz Explores Preservation of Endangered Cultural Heritage in the Western Himalayas

October 23, 2025

SARS-CoV-2 mRNA Vaccines Boost Tumor Immunotherapy

October 23, 2025

Global Coral Phylogeny Unveils Ancient Resilience, Risks

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    159 shares
    Share 64 Tweet 40
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tidal Volume and Peak Pressure: Key Predictors in Jet Ventilation

TU Graz Explores Preservation of Endangered Cultural Heritage in the Western Himalayas

SARS-CoV-2 mRNA Vaccines Boost Tumor Immunotherapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.