• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Understanding the formation of minute droplets in microfluidic devices

Bioengineer by Bioengineer
December 7, 2023
in Chemistry
Reading Time: 3 mins read
0
The Physics of Droplet Breakup in Microfluidic Post-Array Devices
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Emulsions are mixtures of two insoluble liquids, in which one of the liquids exists as a dispersion of small droplets in the other. They are quite common in everyday life; milk, butter, facial creams, paint, and shampoo are familiar examples. Interestingly, emulsions also play an important role in laboratory applications across various fields, including analytical chemistry, biomedical research, and materials science, among others.

The Physics of Droplet Breakup in Microfluidic Post-Array Devices

Credit: Tokyo Tech

Emulsions are mixtures of two insoluble liquids, in which one of the liquids exists as a dispersion of small droplets in the other. They are quite common in everyday life; milk, butter, facial creams, paint, and shampoo are familiar examples. Interestingly, emulsions also play an important role in laboratory applications across various fields, including analytical chemistry, biomedical research, and materials science, among others.

In most cases, these applications benefit from having emulsions in which the dispersed droplets share a similar size, also called “monodisperse emulsions.” Scientists have been on the lookout for efficient mixing methods to produce such emulsions with a high degree of control. In this regard, microfluidics has emerged as a promising approach.

Particularly, microfluidic post-array devices are an attractive way of obtaining emulsions with a desired droplet size at high throughput. These devices force minute amounts of crude emulsion through an array of regularly spaced posts. These posts break up existing droplets on impact until a finer, more monodisperse emulsion is obtained. However, although the process appears to be straightforward, the detailed physics behind microfluidic post-array devices is complex and not well understood.

In a recent study published in the journal Lab on a Chip, a research team from Tokyo Institute of Technology (Tokyo Tech) in Japan set out to address this knowledge gap. The team, including Dr. Shuzo Masui and Associate Professor Takasi Nisisako, ran a series of detailed experiments to understand how various design and operational parameters in post-array devices affect the characteristics of the obtained emulsions. Notably, this study was selected for the cover picture of the journal.

The team analyzed the effects of flow rate, viscosity, and proportion of the two input liquids on droplet size and uniformity, as well as the importance of the geometry and materials of the post array. To this end, they manufactured several custom microfluidic post-array devices using a technique known as soft lithography. Using a high-speed video camera and image analysis algorithms, the researchers could precisely quantify the droplet size and observe their formation in detail.

The results highlight the significance of the effective capillary number (Caeff) in the post-array device. Put simply, Caeff is a measure related to the capillarity phenomenon that is calculated from the viscosity, velocity, and surface tension of the input liquids. “We found that variations in droplet size increased from quasi-monodisperse to polydisperse levels when Caeff exceeded a particular threshold value owing to the relative size increase in satellite or secondary droplets,” explains Dr. Masui.

Additionally, the researchers identified two distinct droplet breakup modes that could be described by equations similar to those used for microfluidic T-junctions, which are relatively simpler and well-studied as a type of droplet generation device.

Overall, the findings of this work shed light on the physics behind post-array devices. This knowledge will be essential for boosting their performance and applicability, as Dr. Masui observes: “Our study contributes to the understanding of droplet breakup in post-array devices and extends their unique droplet generation properties to include high-throughput, high-fraction, robust, and continuous emulsification processes.”

With any luck, these efforts will pave the way for efficient production of high-quality emulsions, leading not only to better cosmetics and paints but also innovations in chemical and material synthesis and scientific progress in biology and medicine via advanced microfluidics.



Journal

Lab on a Chip

DOI

10.1039/d3lc00573a

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Understanding droplet breakup in a post-array device with sheath-flow configuration

Article Publication Date

17-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025
Recursive Enzymatic Network Enables Multitask Molecular Processing

Recursive Enzymatic Network Enables Multitask Molecular Processing

October 17, 2025

How Focus Sharpens Sound Processing: The Brain’s Path to Better Listening

October 17, 2025

Eliminating Uncertainty in Shock Wave Predictions Through Advanced Computational Modeling

October 17, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1261 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    286 shares
    Share 114 Tweet 72
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    121 shares
    Share 48 Tweet 30
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Vision Issues in Autistic Children in Iraq

Boosting Nursing Informatics Literacy with Design Learning

Cardiovascular Risks in COPD Patients Using LABA or LAMA

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.