• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Understanding T cell activation could lead to new vaccines

Bioengineer by Bioengineer
May 30, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists could be one step closer to developing vaccines against viruses such as Zika, West Nile or HIV, according to Penn State College of Medicine researchers.

Most current vaccines work by stimulating a class of white blood cells called B cells to make antibodies that circulate and control infections in the blood. For decades, scientists have been seeking a new type of vaccine that activates another player in the immune system called a T cell to fight off infections within different organs.

A small number of a type of T cell, called memory T cells, are generated following an infection or immunization. Some memory T cells patrol the body looking for repeat infection, while others migrate into organs and remain there; these are called tissue-resident memory cells. These cells can be found where viruses and bacteria can get into the body, such as the skin, the gut and the female reproductive tract, as well as organs that are highly prone to injury, such as the brain.

In a study a team of researchers, led by Aron E. Lukacher, chair and professor of microbiology and immunology, and Saumya Maru, a medical and doctoral student, has uncovered more details about what it takes to generate a good tissue-resident memory T-cell response against repeat infections. They report their results in PLOS Pathogens.

Working with mouse polyomavirus, the researchers developed a library of genetically altered viruses that stimulated T cell receptors at different strength levels in mice. Virus variants with weaker stimulation gave rise to tissue-resident memory T cells in the mouse brain that were better able to fight off a second infection there.

"Adjusting the strength of T cell receptor stimulation — in effect making it weaker — promoted the generation of these resident memory T cells in the brain," Lukacher said. "The weaker the stimulation, the better the memory."

Now that importance of tissue-resident memory T cells in thwarting infections in organs has been identified, vaccine researchers have become interested in learning about factors that promote the number and function of these cells.

If successful, people in the future who are inoculated with vaccines that induce a strong tissue-resident memory T cell response will be "protected from the infection much more efficiently," Lukacher said. "Very certainly having more and better functioning memory T cells will clear out the infection much more rapidly."

###

Other researchers on this project were Todd D. Schell, professor of microbiology and immunology, and Ge Jin, research technologist, both at Penn State College of Medicine.

The National Institute of Allergy and Infectious Diseases, the National Institute of Neurological Disorders and Stroke, and the National Institute of Neurological Disorders and Stroke grant funded this research.

Media Contact

Matt Solovey
[email protected]
717-531-8606
@penn_state

http://live.psu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Investigating Slow-Tempo Relaxing Music as a Remedy for Delirium in Critically Ill Older Adults

October 13, 2025

Comprehensive Genetic Analysis Reveals Connections Between Cannabis Use and Psychiatric, Cognitive, and Physical Health Outcomes

October 13, 2025

Study Challenges Antiplatelet Use in Coronary Patients

October 13, 2025

Analyzing Autism Support Programs Through Data Science

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1231 shares
    Share 492 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Investigating Slow-Tempo Relaxing Music as a Remedy for Delirium in Critically Ill Older Adults

Comprehensive Genetic Analysis Reveals Connections Between Cannabis Use and Psychiatric, Cognitive, and Physical Health Outcomes

AI Models Forecast Pediatric Sepsis, Enabling Proactive Intervention

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.