• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Understanding light-activated proteins in order to improve them

Bioengineer by Bioengineer
May 20, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Centre for Protein Diagnostics (PRODI)

Today, proteins that can be controlled with light are a widely used tool in research to specifically switch certain functions on and off in living organisms. Channelrhodopsins are often used for the technique known as optogenetics: When exposed to light, these proteins open a pore in the cell membrane through which ions can flow in; this is how nerve cells can be activated. A team from the Centre for Protein Diagnostics (PRODI) at Ruhr-Universität Bochum has now used spectroscopy to discover a universal functional mechanism of channelrhodopsins that determines their efficiency as a channel and thus as an optogenetic tool. The researchers led by Professor Klaus Gerwert describe the results in the journal Communications Biology of 14 May 2021. They expect that the findings will help tailor more efficient optogenetic tools in the future.

Properties of natural proteins not optimal for optogenetics

“The introduction of light-sensitive proteins into organisms for the targeted control of certain functions from the outside offers enormous potential for neuroscientific research and its therapeutic application,” says Klaus Gerwert. “Unfortunately, the properties of these naturally occurring proteins, for example in green algae, are not always optimal for the relevant optogenetic application.”

For this reason, the properties of the proteins have to be adapted by changing their gene sequences. Currently, this is done based on trial and error. “In order to specifically optimise the proteins for their potential applications, a deep understanding of molecular reactions and the resulting ion conduction is necessary,” points out Klaus Gerwert. “We obtain the necessary structural dynamic understanding of protein mechanisms with high spatial and temporal resolution by combining time-resolved Fourier-transform infrared spectroscopy and biomolecular simulations,” explains PRODI researcher Dr. Till Rudack.

Molecular mechanisms determine efficiency

Using these methods, Klaus Gerwert and his team recently discovered the mechanism that causes the channelrhodopsin 2 protein, which is widely used in optogenetics, to lose its efficiency over time. Previously, researchers had assumed that light excitation stimulated a specific structural change in the protein. However, the group found that light exposure induces two different structural changes: One is the desired channel opening, which is useful for optogenetics. The second provides only a weak ion current, but gains the upper hand with longer exposure and suppresses the channel opening – a drawback for optogenetics.

In the current study, the researchers used time-resolved Fourier-transform infrared spectroscopy and biomolecular simulations to explore a different channel rhodopsin, called anion-channelrhodopsin-1. “This channel hardly has any loss of efficiency following prolonged exposure and also doesn’t have a second parallel pathway of structural change,” explains Dr. Max-Aylmer Dreier, first author of the study.

“We have thus proven that splitting into two parallel pathways leads to inefficient channels. In efficient channels there doesn’t seem to be a second parallel pathway,” concludes Klaus Gerwert. “In the future, we will use the insights into the underlying molecular mechanisms of channel efficiency to block the inefficient second pathway by targeted protein design and thus design improved optogenetic tools,” predicts Till Rudack.

###

Media Contact
Klaus Gerwert
[email protected]

Original Source

https://news.rub.de/english/press-releases/2021-05-20-optogenetics-understanding-light-activated-proteins-order-improve-them

Related Journal Article

http://dx.doi.org/10.1038/s42003-021-02101-5

Tags: BiologyBiomechanics/Biophysics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Spider Web “Decorations” Could Reveal Exact Location of Captured Prey

October 29, 2025
blank

Lehigh University Researchers Create Computational Model to Optimize Neurostimulation Therapy for Atrial Fibrillation

October 29, 2025

Breakthrough in Spinal Cord Injury: Bioinformatics Paves the Way for Regenerative Therapy

October 29, 2025

Unraveling the Science Behind Wildlife Trafficking and Its Links to Organized Crime

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Pediatric Iodinated Contrast Delivery Worldwide

Neural Networks: The Pathway to Artificial General Intelligence

Mobile Devices Boost Stigmatized Patients’ Online Engagement

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.