• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Understanding immune system interplay to improve organ transplant success

Bioengineer by Bioengineer
May 31, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A rare opportunity to analyse both blood and tissue samples from human transplant recipients has allowed immunology researchers at the Babraham Institute to pinpoint how an immunosuppressive drug works to prevent the production of antibodies against the transplanted tissue. This understanding, gained through working together with transplant research immunologists in Oxford, may lead to improved ways of identifying transplant recipients at risk of rejection and treating autoimmune disease.

As described in a paper published today, the researchers assessed the effect of treatment with an immunosuppressive drug called tacrolimus on a type of immune cell called T follicular helper cells (Tfh). These cells are central to the production of antibodies and are a target of therapeutic strategies to manage unwanted destructive antibodies, for example in auto-immune diseases or in organ transplantation.

Blood and lymph nodes samples were analysed from 61 kidney transplant recipients, some of which had been treated with tacrolimus before the transplant operation. Using both blood and lymph node samples allowed the comparison of circulating immune cells with their counterparts residing in the lymph nodes.

The researchers identified that tacrolimus specifically reduced the number of both circulating Tfh cells and Tfh cells found in the lymph nodes. Confirming this is important for monitoring donor recipients post-transplant which can only be done using blood samples. Reduced numbers of Tfh cells overall would be expected to correlate with suppressed organ rejection whereas a high Tfh cell number would be indicative of an immune response potentially causing organ damage.

Babraham Institute group leader and joint senior author, Dr Michelle Linterman, said: "Now we have identified tacrolimus as a drug that can inhibit T follicular helper cells and reduce the formation of antibodies, it suggests we can use this drug as a way to treat conditions where the action of T follicular helper cells is an underlying cause of disease."

These findings identify the diagnostic relevance of using Tfh cells as a biomarker to assess the immunosuppression status of organ recipients. They point to developments in patient care based upon the status of their immune system, giving a more accurate picture than allowed by current methods monitoring the levels of immunosuppressive drugs in the body.

###

Media Contact

Louisa Wood
[email protected]
01-223-496-230
@babrahaminst

http://www.babraham.ac.uk/

https://www.babraham.ac.uk/news/2018/05/understanding-immune-system-interplay-to-improve-organ-transplant-success

Related Journal Article

http://dx.doi.org/10.3389/fimmu.2018.01184

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Facilitators to Smoking Cessation for HIV+ Men

Community Involvement Eases Depression in China’s Empty Nesters

Group Therapy Boosts Recovery in Elderly Depression

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.