• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Understanding how pathogenic fungi build their carbohydrate armor

Bioengineer by Bioengineer
November 19, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a new study published in Nature Communications, Associate Professor Tuo Wang and his research team from the Department of Chemistry at Louisiana State University revealed the molecular architecture of fungal cell walls and the structural responses to stresses, aiding the development of antifungal drugs targeting cell wall components.

Fungal cell wall

Credit: Tuo Wang, LSU

In a new study published in Nature Communications, Associate Professor Tuo Wang and his research team from the Department of Chemistry at Louisiana State University revealed the molecular architecture of fungal cell walls and the structural responses to stresses, aiding the development of antifungal drugs targeting cell wall components.

Life-threatening fungal infections impact the health of millions of humans across the globe each year. With the limited efficacy of commercially available drugs, the need for novel antifungal compounds is on the rise. 

The Wang research team examined the structural dynamics of fungal polysaccharides and their responses to cell wall stress. Specifically, the team examined the cell wall of Aspergillus fumigatus, a fungal pathogen that causes life-threatening disease in immunocompromised individuals.

The research team coupled its expertise in solid-state nuclear magnetic resonance spectroscopy with a functional genomics approach using multiple mutants of Aspergillus fumigatus, each of which selectively eliminates a single type of structural carbohydrate at one time. 

“This research strategy allowed us to evaluate the structural role of each major carbohydrate by tracking the changes in cell wall structure after the removal of a component,” Wang said. “The spectroscopy method provided atomic resolution on the structure of polysaccharides and associated proteins using intact fungal cell walls free from any treatment that might perturb the native status of these biomolecules.” 

The data led to the development of a revised model of fungal cell wall organization and the assembly of five categories of polysaccharides, including chitin, β-glucan, mannan, α-glucan, and galactosaminogalactan. The findings confirmed an overlooked but prominent role of α-glucans in the cell wall structuration. The mutants produce stiffer and more water-proof cell walls for better protection, which might be a general mechanism used by these microbes to handle stresses.

The research involved an interdisciplinary collaboration with scientists from Institut Pasteur in France, University of Crete in Greece, as well as the Guangxi Academy of Sciences and Chinese Academy of Sciences in China. Scientists involved in this study also utilized instrumentation at the National Science Foundation’s National High Magnetic Field Laboratory in Tallahassee, Fla.

“Now that we revealed the structural principles used by fungi to respond to cell wall defects, it is time to explore how fungi reconstruct this carbohydrate armor to survive through antifungal treatments and severe environments,” said Wang. 

Their findings and methodology may open a new research avenue of looking at these complex biomaterials in many different pathogenic fungal species and assessing the mode of actions of novel antifungal molecules, which will assist in the combat against invasive fungal infections.



Journal

Nature Communications

DOI

10.1038/s41467-021-26749-z

Subject of Research

Cells

Article Title

A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR

Article Publication Date

3-Nov-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding the Blueprint of Neuron Formation

Decoding the Blueprint of Neuron Formation

August 28, 2025
New Theoretical Model Illuminates Ovarian Aging, Paving the Way for Breakthroughs in Women’s Health

New Theoretical Model Illuminates Ovarian Aging, Paving the Way for Breakthroughs in Women’s Health

August 28, 2025

Genetic Insights into Rabbit Intramuscular Fat Development

August 28, 2025

HTSNPedia: A Genetic Database for Hypertension Insights

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Volleyball Training with Smart Robot Tech

Predicting Baseball Pitch Locations with Deep Learning Insights

Innovative Autologous Tissue Valves: A Breakthrough Approach

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.