• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Understanding how cells avoid obstacles

Bioengineer by Bioengineer
September 14, 2023
in Biology
Reading Time: 3 mins read
0
20230817_DizMunoz_final
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Imagine a dark room packed full of furniture. Now imagine moving through it to get to the other side, using only your toe tips for guidance. While it may seem challenging (or unspeakably tedious) to us, this is a task that many cells in our body perform regularly while migrating through tissues. New research from the Diz-Muñoz group at EMBL Heidelberg has now identified a novel molecular pathway that helps cells achieve this feat. 

20230817_DizMunoz_final

Credit: Isabel Romero Calvo/EMBL

Imagine a dark room packed full of furniture. Now imagine moving through it to get to the other side, using only your toe tips for guidance. While it may seem challenging (or unspeakably tedious) to us, this is a task that many cells in our body perform regularly while migrating through tissues. New research from the Diz-Muñoz group at EMBL Heidelberg has now identified a novel molecular pathway that helps cells achieve this feat. 

Cells often move by first extending a part of their outer membrane and cytoplasm in a chosen direction. This protrusion, called the ‘leading edge’, is highly dynamic at first but settles as the cell slowly builds up the underlying skeletal structure. This ‘cytoskeleton’, formed by filaments of a protein called actin, helps stabilise the leading edge and allows the rest of the cell to move in that direction.

However, things get tricky when the leading edge encounters an obstacle, like another cell or a physical barrier. Alba Diz-Muñoz’s group at EMBL studies how mechanical interactions at the surface of the cell regulate its behaviours. “We have something of a material scientist’s view on biology,” Diz-Muñoz said. “Physical properties like fluidity, viscosity, and curvature, particularly at the membrane interface, can influence how a cell reacts to its environment. However, not much is known about how this is coordinated at the molecular level.”

In the new study, published in Nature Communications, Diz Muñoz’s team has identified a protein – Snx33 – as a critical regulator of the process by which cells arrest the progress of the leading edge upon encountering an obstacle. Snx33 belongs to a large family of proteins called BAR-domain proteins, which are known for their ability to sense the curvature of membranes.

When a cell hits an obstacle, the leading edge flattens as a result of this interaction, thus changing the curvature. Through a series of elegant experiments, the researchers showed how Snx33 responds to this change by recruiting molecular machinery that helps inhibit the actin cytoskeleton. This, in turn, helps the cell slowly dissolve the leading edge and make progress in a different direction. Cells from which Snx33 had been genetically deleted, therefore, were slower in navigating environments that were crowded or had barriers. 

There are several currently known BAR-domain proteins, which are highly conserved in animal cells. “From our observations, a picture emerges where the diversity of BAR domain proteins could allow the cells to decode and react to the information from membrane curvature in unique ways, allowing for quick and complex reactions to various environmental stimuli,” said Ewa Sitarska, first author of the study and a former PhD student in the Diz-Muñoz lab.

Diz-Muñoz believes that given the ubiquitousness of BAR-domain proteins, other migrating cell types might also use similar navigational mechanisms. This can be highly relevant not only for immune cells, like the neutrophil-like cells from this study, but also for metastasising tumour cells, embryonic cells during development, or even free-living single-celled microbes. 

“We have identified a molecular gatekeeper which basically tells the cell: ‘You’ve hit an obstacle, go elsewhere,’” said Diz-Muñoz. “I think the general principle – of sensing curvature and activating downstream molecular pathways – might apply at much wider length and time scales, perhaps even at the level of tissues.”

The study involved collaborations with a number of other EMBL groups, including Anna Erzberger, Anna Kreshuk, and Yannick Schwab’s groups at EMBL Heidelberg, and Jan Kosinski’s group at EMBL Hamburg. 

The study also provides impetus for further investigations on curvature-sensing proteins. “Mammalian cells have over 80 different proteins assumed to be sensing curvature and more are still being discovered,” said Sitarska. “Our work provides a hint to how important and widespread this process is. Most of these proteins are still poorly understood and thus, provide a very interesting subject of research.”



Journal

Nature Communications

DOI

10.1038/s41467-023-41173-1

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles

Article Publication Date

13-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

September 11, 2025
Innovative Protein Sources for Dairy Cattle Nutrition

Innovative Protein Sources for Dairy Cattle Nutrition

September 11, 2025

Scientists Identify Astrocytic “Brake” That Inhibits Spinal Cord Repair

September 11, 2025

Worms Uncover the True Crowded Nature of Cells

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Social Exposome Links to Dementia in Latin America

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

Comparative Pharmacokinetics of Levamisole Across Species

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.