• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Understanding cellular functions: New Collaborative Research Center combines life sciences and polymer research

Bioengineer by Bioengineer
December 2, 2022
in Biology
Reading Time: 3 mins read
0
interaction of biopolymers
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The researchers of the new Collaborative Research Center (CRC) 1551, funded by the German Research Foundation (DFG), intend to apply findings of polymer research to molecular processes in order to better understand what happens in body cells. The CRC entitled “Polymer Concepts in Cellular Function” will be initiated in January 2023 under the lead management of Johannes Gutenberg University Mainz (JGU), jointly with the Institute of Molecular Biology (IMB) and the Max Planck Institute for Polymer Research, both located on the JGU campus, as well as the Max Planck Institute of Biophysics in Frankfurt and the University of Stuttgart as strong partners. The participating researchers will focus on the polymer structures of DNA, RNA, and proteins and how the polymer properties of these biomolecules influence their functioning in cells. The DFG has agreed to provide about EUR 9.5 million to fund the work of the new CRC during its first four-year funding period.

interaction of biopolymers

Credit: ill./©: Joana Caria / CRC 1551

The researchers of the new Collaborative Research Center (CRC) 1551, funded by the German Research Foundation (DFG), intend to apply findings of polymer research to molecular processes in order to better understand what happens in body cells. The CRC entitled “Polymer Concepts in Cellular Function” will be initiated in January 2023 under the lead management of Johannes Gutenberg University Mainz (JGU), jointly with the Institute of Molecular Biology (IMB) and the Max Planck Institute for Polymer Research, both located on the JGU campus, as well as the Max Planck Institute of Biophysics in Frankfurt and the University of Stuttgart as strong partners. The participating researchers will focus on the polymer structures of DNA, RNA, and proteins and how the polymer properties of these biomolecules influence their functioning in cells. The DFG has agreed to provide about EUR 9.5 million to fund the work of the new CRC during its first four-year funding period.

 

Focusing on polymer properties of DNA, RNA, and proteins

 

Polymers are molecules made up of many, often identical building blocks, such as in plastics. Polymers are molecules made up of many, often identical building blocks, such as in plastics. Essential biological macromolecules, such as DNA, RNA and proteins, are also polymers (biopolymers). “We intend to study the polymer properties of DNA, RNA, and proteins in order to understand how they interact on the biological level,” explained Professor Edward Lemke, the spokesperson of the new CRC. “For this purpose, we have put together outstanding teams of researchers from the fields of the life sciences and polymer research.” They will be facing considerable challenges, since up to 20 percent of the dry mass of each human cell consists of RNA, while DNA, which has a length of two meters, is packed tightly within a cell nucleus with a diameter of just 10 microns – and yet can be transcribed and replicated.

 

Filling the gap in understanding biopolymer functioning in cells

 

The polymeric nature of these macromolecules in connection with biological mechanisms has to date received insufficient attention, although it has become apparent in recent years how important knowledge of polymers is for a comprehensive understanding of cellular processes. At the same time, there are marked differences between what can be considered standard polymers and biopolymers. Thus, it is necessary to translate the concepts of polymer research into the field of biology.

 

 

 

“The exchange of knowledge and expertise in our network will not primarily serve to make the techniques of polymer research available to the life sciences,” added Professor Dorothee Dormann, deputy spokesperson of the new CRC and Professor of Molecular Cell Biology at JGU. “One of our long-term aims is to describe and understand the nonequilibrium processes in cells triggered by the complex interplay of numerous cellular polymers.” This research will also help the researchers to better understand how cells age on the molecular level and should provide a basis for the development of a new generation of therapeutics.

 

Related links:
https://www.grc.uni-mainz.de/prof-edward-a-lemke/ – GRC fellow Professor Edward A. Lemke ;
https://www.imb.de/research/lemke/research/ – Synthetic Biophysics of Protein Disorder group at the IMB ;
https://www.grc.uni-mainz.de/prof-dorothee-dormann/ – GRC fellow Professor Dorothee Dormann ;
https://www.imb.de/research/our-research-groups/dormann/research – Molecular Mechanisms of RNA-binding Protein Dysfunction in Neurodegenerative Diseases group at the IMB;
https://www.imb.de/ – Institute of Molecular Biology (IMB) ;
https://www.mpip-mainz.mpg.de/en/home – Max Planck Institute for Polymer Research



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Enterococcus faecium Infections in Mexican Children

September 22, 2025

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Deep-Blue CsPbBr3 LEDs Meet Rec.2020

Surface Engineering of SN38 Prodrug Nano-Assemblies: Contrasting Behaviors

New Strategies for Treating Capecitabine-Induced Hand-Foot Syndrome

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.