• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Underground fiber optic sensors record sounds of COVID lockdown, reopening

Bioengineer by Bioengineer
June 28, 2021
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Patrick Mansell, Penn State

In March 2020, daily life in the United States changed in an instant as the country locked down to deal with the initial wave of the COVID-19 pandemic. New research reveals how residents in one community returned to their routines as the restrictions lifted, according to a team of Penn State scientists.

“We used sound signals captured by underground fiber-optic sensors to understand how COVID measures impacted human activities,” said Junzhu Shen, a graduate student in geosciences at Penn State. “These sensors provide very accurate, high-resolution data that can help us understand what’s happening in our communities.”

The scientists analyzed sound data recorded from March through June 2020 in and around the Penn State University Park campus and State College, Pennsylvania. They observed a quiet period that coincided with the lockdown followed by a recovery of activity as the area moved from red to less-restrictive yellow and green phases.

By listening to small changes in vibrations at the surface, the scientists found construction activity and vehicle traffic recovered sooner than pedestrian traffic. They reported their findings in the open-access journal The Seismic Record.

“Footsteps disappeared and really did not recover after business re-opening in late May,” said Tieyuan Zhu, assistant professor of geosciences at Penn State. “But if you look at car traffic, it shows a different pattern. It decreased and recovered. This may give us a hint that people were conservative, working remotely and driving when they had to go outside for things like groceries.”

Other work to measure the impacts of COVID shutdowns on human activity has used seismic sensors or Google mobility data — GPS information collected from devices like cellphones. But using the fiber-optic network allows for higher-resolution data, with measurements collected about every six-and-a-half feet, the scientists said.

“With Google mobility data, we are limited to looking at one data point for the whole county,” Zhu said. “It’s hard to separate one community from another. With our high-density network, we can understand noise variation from one block to another.”

The scientists analyzed data from March, when the lockdown began and Penn State students left campus, through June, when the area entered Pennsylvania’s green phase of reopening.

The results provide a useful assessment tool for decision-makers faced with implementing such measures and could result in a better understanding of how pandemics impact human activities, the scientists said.

To conduct the study, the scientists tapped into miles of continuous telecommunication fiber-optic cables under the University and nearby community. These networks are often found in cities and provide phone and internet service to home and businesses.

A new technology called a distributed acoustic sensing (DAS) array allowed the researchers to send a laser down one of the hair-thin glass fibers contained inside the cables and detect small changes caused by pressure. By taking measurements every six-and-a-half feet, the scientists essentially can create a network of 2,000 sensors.

“Even if there is a small change in the external energy on the ground above, that will stretch or compress the fiber, and we can detect those changes,” Zhu said. “And in the case of COVID, we can provide some indicators to understand whether measures being put in place are effective or not.”

###

A Penn State Institutes of Environment and Energy seed grant and the Institute of Computational and Data Science seed grant supported this work.

Media Contact
A’ndrea Elyse Messer
[email protected]

Tags: BehaviorEarth ScienceGeophysics/Gravity
Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.