• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Uncovering molecular targets for childhood cancer therapeutics

Bioengineer by Bioengineer
December 28, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Department of Pediatrics, Perinatal and Maternal Medicine (Ibaraki),TMDU

Study led by Tokyo Medical and Dental University (TMDU) elucidates genomic targets in refractory neuroblastoma

Tokyo – Neuroblastoma (NB) is the most common solid tumor found in children. It starts in some very early forms of nerve cells found in the embryo or fetus. Amplification of the gene MYCN is a well-characterized genetic alteration in NB and is directly associated with advanced disease and poor prognosis. Besides MYCN amplification, several other genome alterations in NB have been reported. Notably, deletion of the long arm of chromosome 11 (11q deletion) is one of the most frequent events in aggressive neuroblastoma.

In the past two decades, despite extensive efforts to identify the genes associated with11q aberrations in NB, definitive answers are still unclear. This distinct gap in the field has spurred a team of Tokyo Medical and Dental University (TMDU)-centered researchers to investigate the role of the gene ATM and DNA damage response (DDR)-associated molecules located in 11q. A report of the results was recently published.

"The protein ATM, encoded by the ATM gene, is a master regulator of DDR crucial for maintenance of genome integrity. When DNA damage occurs in genes that play a crucial role in the DDR itself, the checkpoint pathway is compromised, contributing to the formation of cancer," explains Masatoshi Takagi, lead author of the study. "Among 237 fresh tumor samples from the patients, we found ATM, MRE11A, H2AFX, and/or CHEK1 gene loss or imbalance in 11q in 20.7% of NB, 89.8% of which were stage 3 or 4 cancer."

Furthermore, nearly half of the samples had a single nucleotide variant and/or copy number alterations in those genes. ATM-defective cells are known to exhibit dysfunctions in DNA repair, suggesting a potential for PARP inhibitor, a commonly used targeted therapy for patients with BRCA mutated ovarian cancer, to arrest NB growth. Indeed, the team found 83.3% NB-derived cell lines exhibited sensitivity to PARP inhibition.

"There is much more to uncover, such as how and when the mutation of DDR-associated molecules, or loss of 11q, occurs during tumor development and progression. Additionally, it will be important to compare the frequency of mutations in DDR-associated molecules or 11q loss between initial samples and relapsed or metastatic region. "Nonetheless, our present results further support the possibility of PARP inhibitor as a promising therapeutic approach for specifically targeting NB due to defects in the series of interrelated pathways that function in the repair of DNA breakage." Based on those finding, Tokyo Medical and Dental University has launched phase I clinical trial using olaparib for refractory pediatric solid tumors.

###

The article, "Loss of DNA Damage Response in Neuroblastoma and Utility of a PARP Inhibitor" was published in Journal of the National Cancer Institute at DOI: 10.1093/jnci/djx062.

Media Contact

Masatoshi TAKAGI
[email protected]

http://www.tmd.ac.jp/english/

Original Source

http://www.tmd.ac.jp/english/press-release/20171227_1/index.html http://dx.doi.org/10.1093/jnci/djx062

Share16Tweet7Share2ShareShareShare1

Related Posts

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

November 1, 2025
blank

Boosting Lettuce Yields with Steel Slag Compost Teas

November 1, 2025

Comparing Immune Responses: Rituximab vs. Obinutuzumab in Follicular Lymphoma

November 1, 2025

β-Hydroxybutyrate Protects Against Early Diabetic Kidney Disease

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Comparing Immune Responses: Rituximab vs. Obinutuzumab in Follicular Lymphoma

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.