• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Uncovering hidden protein structures

Bioengineer by Bioengineer
June 18, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jespah Holthof, University of Konstanz

Combining research-oriented teaching and interdisciplinary collaboration pays off: Researchers at the University of Konstanz develop a novel spectroscopic approach to investigate hitherto difficult-to-observe protein structures. On “campus.kn”, the online magazine of the University of Konstanz, we report on the new approach and its origin at the interface between chemistry and biology.

Using infrared (IR) spectrosocopy, researchers at the University of Konstanz were able to uncover the interaction between the p53 protein, a tumour suppressor that controls the cell cycle, and poly(ADP-ribose) (PAR) and deoxyribonucleic acid (DNA) at the molecular level. The nucleic acid-like biopolymer PAR serves as a cellular signal transmitter and helps to regulate protein activity. By studying the interaction between p53 and PAR, the researchers were able to learn more about molecular reactions to cellular stress in response to, for example, DNA damage, which represents a potential tumour risk. Their basic research on the processes behind DNA damage is, on the one hand, paramount to understanding how cancer develops and how cells age. On the other hand, the innovative scientific approach is advancing the research carried out in their field. Their research results were published in issue 9 (21 May 2019) of the scientific journal Nucleic Acids Research by the Oxford University Press.

In a new article published on “campus.kn”, the online magazine of the University of Konstanz, we tell the story of the project’s development, which builds on interdisciplinary linkages especially between early career researchers: https://www.campus.uni-konstanz.de/en/science/uncovering-hidden-protein-structures

###

Key facts:

    – Article on “campus.kn”, the online magazine of the University of Konstanz, about a novel spectroscopic approach to uncover protein structures that originates from interdisciplinary collaboration at the University of Konstanz

    – Original publication: Annika Krüger, Anna Stier, Arthur Fischbach, Alexander Bürkle, Karin Hauser, Aswin Mangerich, Interactions of p53 with poly(ADP-ribose) and DNA induce distinct changes in protein structure as revealed by ATR-FTIR spectroscopy, Nucleic Acids Research, 2019, 47:9, 4843-4858 (https://doi.org/10.1093/nar/gkz175)

    – Investigation of interaction between the p53 protein and poly(ADP-ribose) (PAR) and deoxyribonucleic acid (DNA)

    – The basic research on the processes behind DNA damage is paramount to understanding how cancer develops and how cells age

Note to editors:

You can download a photo here:
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/verborgene_proteinstrukturen.jpg

Caption: From left to right: Professor Karin Hauser, Annika Krüger und PD Dr Aswin Mangerich

Copyright: Jespah Holthof, University of Konstanz

Contact

University of Konstanz

Communications and Marketing

Phone: + 49 7531 88-3603

E-Mail: [email protected]

uni.kn

Media Contact
Julia Wandt
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nar/gkz175

Tags: BiochemistrycancerCell BiologyChemistry/Physics/Materials SciencesMolecular BiologyToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025

Navigating Shadows: Treating Anorexia and C-PTSD

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.