• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Uncovering anxiety: Scientists identify causative pathway and potential cures

Bioengineer by Bioengineer
February 22, 2024
in Biology
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Anxiety-related disorders can have a profound impact on the mental health and quality of life of affected individuals. Understanding the neural circuits and molecular mechanisms that trigger anxiety can aid in the development of effective targeted pharmacological treatments. Delta opioid receptors (DOP), which localize in the regions of the brain associated with emotional regulation, play a key role in the development of anxiety. Several studies have demonstrated the therapeutic effects of DOP agonists (synthetic compounds which selectively bind to DOPs and mimic the effect of the natural binding compound) in a wide range of behavioral disorders. One such selective DOP agonist—KNT-127—has been shown to exert ‘anxiolytic’ or anxiety-reducing effects in animal models, with minimal side effects. However, its mechanism of action is not clearly understood, thereby limiting its widespread clinical application.

Study reveals specific neuronal circuits and therapeutic mechanisms of delta opioid receptors in anxiety-like behavior

Credit: Yirui Sun

Anxiety-related disorders can have a profound impact on the mental health and quality of life of affected individuals. Understanding the neural circuits and molecular mechanisms that trigger anxiety can aid in the development of effective targeted pharmacological treatments. Delta opioid receptors (DOP), which localize in the regions of the brain associated with emotional regulation, play a key role in the development of anxiety. Several studies have demonstrated the therapeutic effects of DOP agonists (synthetic compounds which selectively bind to DOPs and mimic the effect of the natural binding compound) in a wide range of behavioral disorders. One such selective DOP agonist—KNT-127—has been shown to exert ‘anxiolytic’ or anxiety-reducing effects in animal models, with minimal side effects. However, its mechanism of action is not clearly understood, thereby limiting its widespread clinical application.

To bridge this gap, Professor Akiyoshi Saitoh, along with Ms. Ayako Kawaminami and team from the Tokyo University of Science, Japan, conducted a series of experiments and behavioral studies in mice. Explaining the rationale behind their work, Prof. Saitoh says, “There are currently no therapeutic drugs mediated by delta opioid receptors (DOPs). DOPs likely exert anti-depressant and anti-anxiety effects through a mechanism of action different from that of existing psychotropic drugs. DOP agonists may, therefore, be useful for treatment-resistant and intractable mental illnesses which do not respond to existing treatments.”  Their study was published on 29 December 2024, in Neuropsychopharmacology Reports,

The neuronal network projecting from the ‘prelimbic cortex’ (PL) of the brain to the ‘basolateral nucleus of the amygdala’ (BLA) region, has been implicated in the development of depression and anxiety-like symptoms. The research team has previously shown that KNT-127 inhibits the release of glutamate (a key neurotransmitter) in the PL region. Based on this, they hypothesized that DOP activation by KNT-127 suppresses glutamatergic transmission and attenuates PL-BLA-mediated anxiety-like behavior. To test this hypothesis, they developed an ‘optogenetic’ mouse model wherein they implanted a light-responsive chip in the PL-BLA region of mice and activated the neural circuit using light stimulation. Further, they went on to assess the role of PL-BLA activation on innate and conditioned anxiety-like behavior.

They used the elevated-plus maze (EPM) test, which consists of two open arms and two closed arms on opposite sides of a central open field, to assess behavioral anxiety in the mice. Notably, mice with PL-BLA activation spent lesser time in the central region and open arms of the maze, compared to controls, which was consistent with innate anxiety-like behavior. Next, the researchers assessed conditioned fear response of the animals by exposing them to foot shocks and placing them in the same shock chamber the following day without re-exposing them to current. They recorded the freezing response of the animals which reflects fear. Notably, animals with PL-BLA activation and controls exhibited similar behavior, suggesting that distinct neural pathways control innate anxiety-like behavior and conditioned fear response.

Finally, they examined the effects or KNT-127 treatment on anxiety-like behavior of mice using the EPM test. Remarkably, animals treated with KNT-127 exhibited an increase in the percentage time spent in the open arms and central field of the maze, compared to controls. These findings suggest that KNT-27 reduces anxiety-like behavior induced by the specific activation of the PL-BLA pathway.

Overall, the study reveals the role of the PL-BLA neuronal axis in the regulation of innate anxiety, and its potential function in DOP-mediated anxiolytic effects. Further studies are needed to understand the precise underlying molecular and neuronal mechanisms, for the development of novel therapies targeting DOP in the PL-BLA pathway.

Highlighting the long-term clinical applications of their work, Prof. Saitoh remarks, “The brain neural circuits focused on in this study are conserved in humans, and research on human brain imaging has revealed that the PL-BLA region is overactive in patients with depression and anxiety disorders. We are optimistic that suppressing overactivity in this brain region using DOP-targeted therapies can exert significant anxiolytic effects in humans.”

 

***

 

Reference                     

DOI: https://doi.org/10.1002/npr2.12406

 

About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan’s development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society,” TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today’s most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

 

 

About Professor Akiyoshi Saitoh from Tokyo University of Science

Professor Akiyoshi Saitoh, a distinguished researcher and Professor at Tokyo University of Science’s Faculty of Pharmaceutical Sciences, is renowned for his expertise in medical and behavioral pharmacology, neuroscience, and anti-anxiety drug development. Holding a Ph.D. from Hoshi University, he has authored over 100 impactful publications in areas such as Pharmacology, Psychopharmacology, and Neuropharmacology. With four patents to his name, Prof. Saitoh’s innovative contributions have left a lasting mark. His influential work, reflected in numerous citations, establishes him as a key figure in advancing pharmaceutical and neuroscience disciplines. 



Journal

Neuropsychopharmacology Reports

DOI

10.1002/npr2.12406

Method of Research

Experimental study

Subject of Research

Animals

Article Title

The delta opioid receptor agonist KNT-127 relieves innate anxiety-like behavior in mice by suppressing transmission from the prelimbic cortex to basolateral amygdala

Article Publication Date

29-Dec-2023

COI Statement

The authors declare no conflict of interest

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Opposing ATPases and ALKBH1 Shape Chromatin, Stress Response

August 15, 2025
Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

August 15, 2025

Ancient Cephalopod Unveiled: Nautilus Exhibits Surprising Sex Chromosome System

August 15, 2025

New Pediatric Study Reveals Sex-Specific Fetal Responses to Maternal Hypertension

August 15, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Opposing ATPases and ALKBH1 Shape Chromatin, Stress Response

New gE-Fc Subunit Vaccine Shows Safe, Effective Protection

Environmental and Health Costs of China’s Express Delivery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.