• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UNC researchers identify promising delivery method for immunotherapy combination

Bioengineer by Bioengineer
April 25, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHAPEL HILL – Using nanoparticles to bind molecules that can unleash and stimulate immune cells, University of North Carolina Lineberger Comprehensive Cancer Center researchers found they could more effectively trigger the body's defenses system against cancer in laboratory studies.

The researchers believe their findings, published in the journal Advanced Materials, offer a promising new nanotechnology-based delivery method for an immunotherapy combination.

"Our study suggests that if you're able to present two different therapeutics at the same time to immune cells to help them fight cancer, the effect is greater," said UNC Lineberger's Andrew Z. Wang, associate professor in the UNC School of Medicine Department of Radiation Oncology. "It's difficult to deliver them at the same time unless you tie them together, and a nanoparticle is one great way to tie the two together."

Immune cells called T-cells can fight and kill tumors, but they have regulatory signals that limit their effectiveness. Treatments called checkpoint inhibitors have been developed to "release the brakes" on immune cells, and have been shown to be a powerful tool to fight lung cancer and melanoma for a subset of patients. Clinical trials have launched to test combining checkpoint inhibitors that release the immune system's brakes with treatments designed to send "green light" signals to boost the immune response. UNC Lineberger researchers developed a mechanism that combines these two compound types on a single nanoparticle with the goal of producing better results.

"Our immune cells have both positive and negative signals, like red lights and green lights," Wang said. "It's part of the balance of the immune system — if you get too much immune activation, you get autoimmune disease. If you go the other way, the lack of immune suppression can give you tumors. We are studying a combination of treatments that both send green light signals to attack, and to block red light signals."

In their study, Wang and his colleagues used a nanoparticle to combine a checkpoint inhibitor with aOX40, or anti-tumor necrosis factor receptor superfamily member 4. Since they also believe that radiation treatment can help stimulate T-cells, they added a "priming dose" of radiation.

The combination stimulated T-cells at higher rates in laboratory studies than antibodies delivered separately. In tumor models, binding together immunotherapies with a nanoparticle was more effective at attacking tumors than when the compounds were delivered separately. In animal models of melanoma, treating mice with the combination-nanoparticle treatment and given radiation produced the highest immunotherapy response rates, and a cure rate of 30 percent. They also found greater control of breast cancer in laboratory studies using the combination, and increased survival time.

"These results will help us build better delivery systems to maximize the potential of immune-boosting therapy for cancer," said UNC Lineberger's Benjamin Vincent, MD, assistant professor in the UNC School of Medicine Division of Hematology and Oncology.

###

In addition to Vincent and Wang, other authors include Yu Mi, Christof C. Smith, Feifei Yang, Yanfei Qui, Kyle C. Roche, and Jonathan M. Serody.

The study was supported by the National Institutes of Health and National Cancer Institute, and the Department of Defense Congressionally Directed Medical Research Programs-Peer Reviewed Cancer Research Program Idea Award. Individual researchers were supported by the University Cancer Research Fund, the Paul Calabresi Oncology K12 Award, and the UNC CCNE Pilot Grant.

Media Contact

Laura Oleniacz
[email protected]
919-445-4219

http://cancer.med.unc.edu/

http://unclineberger.org/news/unc-researchers-identify-promising-delivery-method-for-immunotherapy

Share12Tweet7Share2ShareShareShare1

Related Posts

Sure! Here’s a rewritten version of the headline for a science magazine post: “Indra’s Internet: Revolutionizing Connectivity with Cutting-Edge Technology” If you’d like it to be more technical or catchy, let me know!

September 17, 2025

Patients in the World’s Poorest Countries Face Triple the Mortality Risk After Abdominal Trauma Surgery

September 17, 2025

Soap Shortage Identified as Top Obstacle to Effective Hand Hygiene in Shared Community Spaces

September 17, 2025

Innovative AI Algorithm Leverages Mammograms to Precisely Predict Cardiovascular Risk in Women

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough Room-Temperature Terahertz Device Paves the Way for 6G Networks

Lymph Nodes Identified as Crucial Drivers of Successful Cancer Immunotherapy

Sure! Here’s a rewritten version of the headline for a science magazine post: “Indra’s Internet: Revolutionizing Connectivity with Cutting-Edge Technology” If you’d like it to be more technical or catchy, let me know!

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.