• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UNC Charlotte bioinformatics professor discovers surprising evolutionary pattern in landmark yeast study

Bioengineer by Bioengineer
April 26, 2024
in Biology
Reading Time: 4 mins read
0
Yeast colonies
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of North Carolina at Charlotte Assistant Professor of Bioinformatics Abigail Leavitt LaBella has co-led an ambitious research study — published this week in the widely influential journal Science — that reports intriguing findings made through innovative artificial intelligence analysis about yeasts, the small fungi that are key contributors to biotechnology, food production and human health. The findings challenge accepted frameworks within which yeast evolution is studied and provide access to an incredibly rich yeast analysis dataset that could have major implications for future evolutionary biology and bioinformatics research.

Yeast colonies

Credit: UNC Charlotte

University of North Carolina at Charlotte Assistant Professor of Bioinformatics Abigail Leavitt LaBella has co-led an ambitious research study — published this week in the widely influential journal Science — that reports intriguing findings made through innovative artificial intelligence analysis about yeasts, the small fungi that are key contributors to biotechnology, food production and human health. The findings challenge accepted frameworks within which yeast evolution is studied and provide access to an incredibly rich yeast analysis dataset that could have major implications for future evolutionary biology and bioinformatics research.

LaBella, who joined UNC Charlotte’s Department of Bioinformatics in the College of Computing and Informatics as an assistant professor and researcher at the North Carolina Research Campus in 2022, conducted the study with co-lead author Dana A. Opulente of Villanova University. They collaborated with fellow researchers from Vanderbilt University and the University of Wisconsin at Madison, along with colleagues from research institutions across the globe.

This is the flagship study of the Y1000+ Project, a massive inter-institutional yeast genome sequencing and phenotyping endeavor that LaBella joined as a postdoctoral researcher at Vanderbilt University. 

“Yeasts are single-celled fungi that play critical roles in our everyday lives. They make bread and beer, are used in the production of medicine, can cause infection, and as close relatives to animals have helped us learn about how cancer works,” said LaBella. “We wanted to know how these small fungi have evolved to have such an incredible range of functions and features. With the characterization of over one thousand yeasts, we found that yeasts do not fit the adage ‘jack of all trades, master of none.’” 

This study contributes to basic understanding of how the microbes change over time while generating more than 900 new genome sequences for yeasts — many of which could be leveraged in biofungal fields such as agricultural pest control, drug development and biofuels production.  

LaBella and her co-authors — through an artificial intelligence-assisted, machine-learning analysis of the Y1000+ Project’s dataset comprising 1,154 strains of the ancient, single-cell yeast Saccaromycotina — attempted to answer an important question. That is: Why do some yeasts eat (or metabolize) only a few types of carbon for energy while others can eat more than a dozen? 

The total number of carbon sources used by a yeast for energy is known in ecological terms as its carbon niche-breadth. Humans also vary in their carbon niche breadth — for example, some people can metabolize lactose while others cannot. 

Evolutionary biology research has supported two key overarching paradigms about niche breadth, the phenomenon explaining why some yeast organisms (“specialists”) evolve to be able to metabolize only a small number of carbon forms as fuel while others (“generalists”) evolve to be able to consume and grow on a broad variety of carbon forms. One of these paradigms illustrates that being a generalist comes with certain trade-offs compared to being a specialist. Notably, in the latter case, the ability to process a wide range of carbon forms comes at the expense of the yeast’s capacity to process and grow on each carbon form efficiently. The second is that these yeast specialists and generalists evolve to fit either profile due to the combined effects of different intrinsic traits of their respective genomes and different extrinsic influences based on the varying environments in which yeast organisms exist.

LaBella and her colleagues found ample evidence supporting the idea that there are identifiable, intrinsic genetic differences in yeast specialists versus generalists, specifically that generalists tend to have a larger total number of genes than specialists. For example, they found that generalists are more likely to be able to synthesize carnitine, a molecule that is involved in energy production and often sold as an exercise supplement.

But unexpectedly, their research found very limited evidence for the anticipated evolutionary trade-off of a yeast’s ability to process many forms of carbon coming at the expense of its ability to do so efficiently and grow accordingly, and vice versa.

“We saw that the yeasts that could grow on lots of carbon substrates are actually very good growers,” said LaBella. “That was a very surprising finding to us.”

While the findings of this specific experiment and the innovative machine-learning mechanisms used in its analysis could have major implications for bioinformatics, ecology, metabolics and evolutionary biology, the publishing of this study means that the Y1000+ Project’s massive compendium of yeast data is now available for scholars worldwide to use as a starting point to amplify their own yeast research.

“This dataset will be a huge resource going forward,” said LaBella.

 



Journal

Science

DOI

10.1000/xyz123

Method of Research

Experimental study

Article Title

Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts

Article Publication Date

25-Apr-2024

COI Statement

JLS was a scientific adviser for WittGen Biotechnologies and is an adviser for ForensisGroup, Inc. AR is a scientific consultant for LifeMine Therapeutics, Inc. The other authors declare no other competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Global Spread of Plasmid-Driven Carbapenem Resistance

Global Spread of Plasmid-Driven Carbapenem Resistance

December 8, 2025
Low-Dose Irradiation Boosts Antioxidants in Produce

Low-Dose Irradiation Boosts Antioxidants in Produce

December 8, 2025

Rice miRNA: Key Regulator in Fungal Interactions

December 3, 2025

Human Impact Alters Leopard and Ungulate Dynamics

December 3, 2025

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    108 shares
    Share 43 Tweet 27
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sarcopenia and Osteoporosis: Combined Impact on Mortality

Link Between HLA Class I Alleles and Tuberculosis Risk

Shear Band Formation in BCC HfNbTaTiZr Alloy

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.