• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UMSOM researchers discover first ever link between hemoglobin-like protein and normal heart development

Bioengineer by Bioengineer
December 15, 2023
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BALTIMORE, December 14, 2023– In a landmark study led by the University of Maryland School of Medicine, researchers discovered for the first time that a certain kind of protein similar to hemoglobin, called cytoglobin, plays an important role in the development of the heart. Specifically, it affects the correct left-right pattern of the heart and other asymmetric organs. The findings, published today in the journal Nature Communications, could eventually lead to the development of new therapeutic interventions to alter the processes that lead to these defects.

Malformed Heart in Zebra Fish Missing Cytoglobin Gene

Credit: University of Maryland School of Medicine

BALTIMORE, December 14, 2023– In a landmark study led by the University of Maryland School of Medicine, researchers discovered for the first time that a certain kind of protein similar to hemoglobin, called cytoglobin, plays an important role in the development of the heart. Specifically, it affects the correct left-right pattern of the heart and other asymmetric organs. The findings, published today in the journal Nature Communications, could eventually lead to the development of new therapeutic interventions to alter the processes that lead to these defects.

The team used CRISPR gene editing technologies to knock out the cytoglobin gene in zebrafish. The lack of cytoglobin caused the development of embryos with a mirrored heart, meaning the heart had a reversed left-right pattern. In humans, cytoglobin is involved in processes involving nitric oxide, a compound that helps regulate healthy blood flow to organs. Study co-senior author Mark T. Gladwin, MD, the John Z. and Akiko K. Bowers Distinguished Professor and Dean, University of Maryland School of Medicine, and Vice President for Medical Affairs, University of Maryland, Baltimore, has been researching the effects of nitric oxide on blood  vessels for more than 20 years including in this recent study finding.

“Since its discovery two decades ago, cytoglobin has been found to be expressed in nearly all human tissues, but the mechanisms of how this protein functions were largely unknown,” said Dr. Gladwin. “We know that cytoglobin can play a role in modulating and maintaining nitric oxide levels, but our new finding indicates that it positively regulates NO production to ensure proper cilia function and its absence can lead to major laterality abnormalities of organs.”  

To conduct the study, the research team knocked out the gene for cytoglobin in zebrafish and were amazed to see that it led to dramatic defects in the structure and location of organs in developing embryos. The heart, for example, was located on the right side of the fish instead of the left with a looping to the left instead of the right.

“We found that cytoglobin plays a vital role in the structure and function of tiny hair-like structures called cilia, which determine the asymmetry and proper development of organs,” said study senior author Paola Corti, PhD, Assistant Professor of Biochemistry and Molecular Biology at UMSOM.

This is the first time cytoglobin – or any of the globin proteins like hemoglobin – has been found to be involved in fetal development and that a paucity could be linked to birth defects. It’s also the first time that cytoglobin has been linked to cilia function. Such a finding could open the door for the development of therapeutics for rare birth defects that affect the movement of cilia.

About 1 in every 10,000 to 30,000 people are born with Primary Ciliary Dykinesia (PCD), a rare disease that affects the cilia and can cause breathing issues from thickened mucus clogging airways. “Kartagener’s syndrome is a form of PCD and is known to cause the type of heart defects seen in the zebrafish where the heart is abnormally positioned to the right and rotated,” said Dr. Corti. “There is no cure for this condition, just surgery to fix any heart defects and treatments to manage symptoms.”

While certain genes have been identified that are known to cause about 70 percent of PCD cases, cytoglobin could play a key role in the 30 percent of cases with no known genetic cause.

“We found the phenotype and connected the dots to cilia. In the presence of cytoglobin, we could track the function of the protein and how if led to proper cilia function and organ development. In the absence, we saw these defects,” said Elizabeth Rochon, PhD, first author of the study and Assistant Professor of Medicine at UMSOM.

Funding for the study was from the National Institutes of Health, the American Heart Association, and the Institute for Transfusion Medicine and the Hemophilia Center. UMSOM faculty co-authors include Anthony W. DeMartino, PhD, Assistant Professor of Medicine, and  Qinzi Xu, MD, Assistant Professor of Medicine.

Other co-authors included faculty at the University of Pittsburgh School of Medicine and the University of Copenhagen in Denmark.

 



Journal

Nature Communications

DOI

10.1038/s41467-023-43544-0

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Cytoglobin regulates NO-dependent cilia motility and organ laterality during development

Article Publication Date

14-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Tracking Tumor DNA During Gastric Cancer Treatment

Tracking Tumor DNA During Gastric Cancer Treatment

August 1, 2025
Heparan Sulfate Protein Improves MPS IIIB Symptoms

Heparan Sulfate Protein Improves MPS IIIB Symptoms

August 1, 2025

Rising Use of Cannabis for Chronic Health Issues Amid Ongoing Uncertainty

August 1, 2025

March5 Drives Trim28 Degradation to Preserve β-Cells

August 1, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Tumor DNA During Gastric Cancer Treatment

Heparan Sulfate Protein Improves MPS IIIB Symptoms

Revolutionary AI Technology Paves the Way for Innovative Materials to Replace Lithium-Ion Batteries

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.