• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UMN researchers discover influenza virus doesn’t replicate equally in all cells

Bioengineer by Bioengineer
September 19, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MINNEAPOLIS, MN- September 19, 2018- The seasonal flu is caused by different subtypes of Influenza A virus and typically leads to the death of half a million people each year. In order to better understand this virus and how it spreads, University of Minnesota Medical School researchers took a closer look at the cells inside the lungs. What they discovered is not only is the immune system response tuned to the amount of virus replication, it's also tuned to the viral spread. This deeper and more accurate understanding of the influenza virus and how it spreads could be the building blocks to better protective therapies for patients in the future.

"Distinct antiviral signatures revealed by the magnitude and round of influenza virus replication in vivo," was recently published in Proceedings of the National Academy of Sciences of the United States of America. (PNAS) and details the process in which the researchers were able to come to this conclusion. In order to study this properly, they first had to create a virus that could not could spread- it could replicate but never get into a new cell.

Once they accomplished this, they could then artificially look at virus spread, with the goal of studying how new infections changed after immune responses have started. They found that during virus spread, the second round of replication does not seriously infect ciliated cells, which means the body does a really good job protecting those cells. However other cells weren't protected at all, like type-one alveolar cells which are the cells responsible for gas exchange.

"It's really important to know how cells protect themselves from viruses and how this protection can be imparted on different cell types," said the study's senior author Ryan Langlois, PhD, assistant professor in the Department of Microbiology and Immunology at the University of Minnesota Medical School. "Clearly its not equal. Why it isn't equal, what are the mechanisms driving this, and what this means for disease we don't know yet."

Thanks to this research however, researchers now have the building blocks with which to investigate those questions.

"These results change how we view the early infection landscape of cells," said Langlois. "It brings up new questions, such as what are the earliest viral events and antiviral events that are happening in a host."

###

About the University of Minnesota Medical School

The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

Media Contact

Krystle Barbour
[email protected]
612-626-2767
@umnmedschool

https://www.med.umn.edu/

Share14Tweet7Share2ShareShareShare1

Related Posts

Severe Pregnancy Sickness Linked to Over 50% Increase in Risk of Mental Health Disorders

Severe Pregnancy Sickness Linked to Over 50% Increase in Risk of Mental Health Disorders

September 19, 2025

Tirzepatide Enhances Blood Sugar Regulation in Adolescents with Type 2 Diabetes Unresponsive to Current Treatments (SURPASS-PEDS Trial)

September 18, 2025

Texas A&M Researchers Develop Innovative Cryopreservation Technique to Stop Organ Cracking

September 18, 2025

Optimizing Geriatric Care: Staff Insights on Patient Mobilization

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Severe Pregnancy Sickness Linked to Over 50% Increase in Risk of Mental Health Disorders

Transforming Sewage Sludge: Phosphorus Release Dynamics

Tirzepatide Enhances Blood Sugar Regulation in Adolescents with Type 2 Diabetes Unresponsive to Current Treatments (SURPASS-PEDS Trial)

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.