• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UMN Medical School researchers contribute to important neurological discovery

Bioengineer by Bioengineer
October 30, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MINNEAPOLIS, MN- October 30, 2018- A team of researchers from the University of Minnesota Medical School, the Max Planck Florida Institute for Neuroscience, and the Frankfurt Institute for Advanced Studies, have used the brain's spontaneously generated patterns of activity to glean novel insights into network structure and development. They found the existence of precise organizational networks in the cerebral cortex much earlier in development than previously thought.

The cerebral cortex in humans and carnivores has a very precise special organization that involves networks of neurons. Composed of thousands of neurons distributed over millimeters of the cortical surface, distributed networks play a critical role in all aspects of brain function including the processing of complex sensory input.

"Not only are these large scale networks present much earlier than we thought, but they predict future function," said Gordon Smith, PhD., Department of Neuroscience at the University of Minnesota Medical School. "What that suggests is that events happening early in development are setting the stage for what we see later in life."

In a study published in Nature Neuroscience, researchers used calcium imaging techniques to visualize with unprecedented resolution spontaneous activity patterns in the mature visual cortex. While they expected to see widespread patterns of activity, they hadn't anticipated the high degree of precision they observed in the network interactions. The spontaneous network activity patterns were so highly correlated that the activity of small populations of neurons could reliably predict coincident network activity patterns millimeters away, and these correlation patterns beautifully predicted the patterns of network activity evoked by visual stimulation.

When they looked earlier in development prior to eye opening, they discovered robust long-range patterns of correlated spontaneous activity that extended over distances comparable to what was seen in the mature brain.

"This was surprising, since connectivity in the brain is very immature at this point in development," said Smith, whose work on this study was done both at the Max Planck Florida Institute and the University of Minnesota. "This finding led us to propose a novel computational model of the early visual cortex that can replicate these findings." The model shows that at early stages in development, long-range network activity can be generated by activity patterns spreading through chains of local cortical connections.

Future studies will test the prediction that activity dependent plasticity mechanisms shape the structure of long-range connections based on the instructive activity patterns derived from local cortical connections. Smith is currently furthering this research at the University of Minnesota.

###

About the University of Minnesota Medical School:

The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

Media Contact

Krystle Barbour
[email protected]
612-626-2767
@umnmedschool

https://www.med.umn.edu/

https://www.med.umn.edu/news-events/umn-medical-school-researchers-contribute-important-neurological-discovery

Related Journal Article

http://dx.doi.org/10.1038/s41593-018-0247-5

Share12Tweet7Share2ShareShareShare1

Related Posts

Vitamin D’s Impact on Autism: A Clinical Trial

November 3, 2025

Increased Distance to Family Physicians Significantly Impairs Access to Healthcare Services

November 3, 2025

Exploring Upward Bullying in China’s Nurse Managers

November 3, 2025

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Perpendicular-Anisotropy Spin Ice Enables Tunable Reservoir Computing

Nutrient Sources’ Influence on Gladiolus Growth and Soil Microbes

Vitamin D’s Impact on Autism: A Clinical Trial

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.