• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UMass Amherst researchers create intelligent electronic microsystems from green material

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team from the University of Massachusetts Amherst has created an electronic microsystem that can intelligently respond to information inputs without any external energy input, much like a self-autonomous living organism. The microsystem is constructed from a novel type of electronics that can process ultralow electronic signals and incorporates a device that can generate electricity “out of thin air” from the ambient environment.

The groundbreaking research was published June 7 in the journal Nature Communications.

Jun Yao, an assistant professor in the electrical and computer engineering (ECE) and an adjunct professor in biomedical engineering, led the research with his longtime collaborator, Derek R. Lovley, a Distinguished Professor in microbiology.

Both of the key components of the microsystem are made from protein nanowires, a “green” electronic material that is renewably produced from microbes without producing “e-waste.” The research heralds the potential of future green electronics made from sustainable biomaterials that are more amenable to interacting with the human body and diverse environments.

This breakthrough project is producing a “self-sustained intelligent microsystem,” according to the U.S. Army Combat Capabilities Development Command Army Research Laboratory, which is funding the research.

Tianda Fu, a graduate student in Yao’s group, is the lead author. “It’s an exciting start to explore the feasibility of incorporating ‘living’ features in electronics. I’m looking forward to further evolved versions,” Fu said.

The project represents a continuing evolution of recent research by the team. Previously, the research team discovered that electricity can be generated from the ambient environment/humidity with a protein-nanowire-based Air Generator (or ‘Air-Gen’), a device which continuously produces electricity in almost all environments found on Earth. The Air-Gen invention was reported in Nature in 2020.

Also in 2020, Yao’s lab reported in Nature Communications that the protein nanowires can be used to construct electronic devices called memristors that can mimic brain computation and work with ultralow electrical signals that match the biological signal amplitudes.

“Now we piece the two together,” Yao said of the creation. “We make microsystems in which the electricity from Air-Gen is used to drive sensors and circuits constructed from protein-nanowire memristors. Now the electronic microsystem can get energy from the environment to support sensing and computation without the need of an external energy source (e.g. battery). It has full energy self-sustainability and intelligence, just like the self-autonomy in a living organism.”

The system is also made from environmentally friendly biomaterial – protein nanowires harvested from bacteria. Yao and Lovley developed the Air-Gen from the microbe Geobacter, discovered by Lovley many years ago, which was then utilized to create electricity from humidity in the air and later to build memristors capable of mimicking human intelligence.

“So, from both function and material,” says Yao, “we are making an electronic system more bio-alike or living-alike.”

“The work demonstrates that one can fabricate a self-sustained intelligent microsystem,” said Albena Ivanisevic, the biotronics program manager at the U.S. Army Combat Capabilities Development Command Army Research Laboratory. “The team from UMass has demonstrated the use of artificial neurons in computation. It is particularly exciting that the protein nanowire memristors show stability in aqueous environment and are amenable to further functionalization. Additional functionalization not only promises to increase their stability but also expand their utility for sensor and novel communication modalities of importance to the Army.”

###

Media Contact
Patty Shillington
[email protected]

Original Source

https://www.umass.edu/news/article/umass-amherst-researchers-create-self-sustaining-intelligent-electronic-microsystems

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-23744-2

Tags: Biomedical/Environmental/Chemical Engineeringbiomimetic computationChemistry/Physics/Materials SciencesElectrical Engineering/Electronicsenergy harvestinggreen electronicsMicrobiologyNanotechnology/Micromachinesprotein nanowiresRobotry/Artificial Intelligenceself-sustaining microsystemsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Mapping Xanthone Production in Garcinia oblongifolia

Mapping Xanthone Production in Garcinia oblongifolia

December 15, 2025

Nursing Students’ Perspectives on ICU Adaptation Challenges

December 15, 2025

AI Empathy: ChatGPT vs. Physicians in Study

December 15, 2025

Parent Satisfaction and Anxiety in Newborn Hearing Screenings

December 15, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping Xanthone Production in Garcinia oblongifolia

Nursing Students’ Perspectives on ICU Adaptation Challenges

AI Empathy: ChatGPT vs. Physicians in Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.