• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UM researchers document ancient and methane-derived carbon in stoneflies

Bioengineer by Bioengineer
November 10, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MISSOULA – New research by scientists at the University of Montana's Flathead Lake Biological Station has documented the first example of freshwater consumers using ancient methane-derived carbon and the most extensive example of a methane-derived carbon contribution to a river ecosystem.

The research – conducted by FLBS researchers Amanda DelVecchia and Jack Stanford, along with Xiaomei Xu from the University of California at Irvine – was recently published in the open access journal, Nature Communications. Read the article online at http://www.nature.com/articles/ncomms13163.

The team's research focused on the Nyack floodplain on the Middle Fork of the Flathead River in Montana; the main stem of the Flathead River in Kalispell, Montana; the Jocko River floodplain near Arlee, Montana; and the Methow River floodplain in Winthrop, Washington. The work helped helps to explain a decades-old question in groundwater ecology: How do thousands of large-bodied stoneflies survive in the barren (carbon-poor) and dark environment of gravel aquifers underlying river floodplains?

The researchers found that up to 67 percent of the carbon in stonefly biomass (body tissue) across entire floodplains came from methane. Furthermore, the methane carbon in the Nyack floodplain ranged from modern to millennial-aged (6,900 years old) to ancient (greater than 50,000 years old).

The millennial-aged methane carbon could have come from organic matter deposited during the retreat of the last glaciation 7,000-10,000 years ago, or the ancient carbon could have come from a shale methane source, as the Kishenehn shale formation underlies the floodplain. Either methane source was likely consumed by bacteria first before being directly or indirectly consumed by the stoneflies themselves.

River floodplains are some of the most valuable and most threatened ecosystems in the world. The findings of this study advance scientific understanding of the base energy sources in freshwater ecosystems and underscore the value of pristine river floodplains for maintaining biodiversity, productivity and ecosystem services such as maintained water quality.

The researchers continue to research the role of methane in the food web and community ecology of the Nyack aquifer and expect subsequent findings to be published over the next one to two years.

###

DelVecchia received her Ph.D. from UM in 2016. She is a National Science Foundation Postdoctoral Scholar at Allegheny College, North Carolina State University and the Rocky Mountain Biological Station; Stanford is emeritus professor and former director of the Flathead Lake Biological Station; and Xu is a project scientist at the UC Irvine Keck Laboratory.

Media Contact

Amanda DelVecchia
[email protected]
406-407-4082

http://www.umt.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Models for Urothelial Neoplasm Classification Validated

October 25, 2025

Rotavirus RNA in Wastewater Reflects US Infection, Vaccination

October 25, 2025

Exploring N-Succinyl Chitosan Gel: Synthesis and Safety

October 25, 2025

Glycation Boosts Alpha-Synuclein Aggregation, Neuroinflammation

October 25, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    192 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Models for Urothelial Neoplasm Classification Validated

Rotavirus RNA in Wastewater Reflects US Infection, Vaccination

Exploring N-Succinyl Chitosan Gel: Synthesis and Safety

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.