• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Ultrafast particle interactions could help make quantum information devices feasible

Bioengineer by Bioengineer
October 16, 2019
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research presents the detection of energy transfer from excited electrons to the crystal lattice on the femtosecond timescale. Knowledge could contribute to the development of materials that prolong the coherence time

IMAGE

Credit: image: researcher archive


Energy is information. Lengthening the time during which a system is capable of retaining energy before losing it to the local environment is a key goal for the development of quantum information. This interval is called the “coherence time”. Several studies have been performed with the aim of retarding decoherence.

A study conducted by researchers at the University of Campinas’s Gleb Wataghin Institute of Physics (IFGW-UNICAMP) in São Paulo State, Brazil, in partnership with colleagues at the University of Michigan’s Physics Department in Ann Arbor, USA, and Sungkyunkwan University’s Advanced Institute of Nanotechnology (SAINT SKKU) in Seoul, South Korea, set out to understand the decoherence process on the femtosecond (10-15 s) timescale. An article describing the results was published in Physical Review Letters.

In the study, interactions between excitons (excited electrons) and phonons (quantum units of vibrational energy in a crystal lattice) were observed on the femtosecond timescale. A femtosecond is one quadrillionth of a second.

The use of a revolutionary ultrafast spectroscopy technique with high temporal and spectral resolution was fundamental to the success of the study, which was supported by FAPESP via a Young Investigator Grant awarded to Lázaro Aurélio Padilha Junior and a project conducted in partnership with the University of Michigan under the aegis of the São Paulo Research Foundation – FAPESP program São Paulo Researchers in International Collaboration (SPRINT).

Padilha was one of the principal investigators for the project, and Diogo Burigo Almeida, then a postdoctoral fellow at Michigan, was one of the main authors. The experiment was performed with semiconducting nanocrystals dispersed in a colloidal solution at cryogenic temperatures.

“We found that when the material is excited [by light], the light it emits changes color in under 200 femtoseconds. This is due to interaction between excitons and phonons. The excitons transfer part of the energy they receive to the crystal lattice. This causes a change of frequency and hence a change of emission color,” Padilha told.

Their study was the first to observe this phenomenon. “It had never been observed before because the amount of energy transferred from each exciton to the lattice is tiny, corresponding to 26 millielectron volts (26×10-3 eV), and the process takes a very short time, lasting under 200 femtoseconds (200×10-15 s). Similar phenomena have been observed but on far greater timescales and due to other processes. We accessed hitherto unknown physical relations,” he said.

He and his research group long studied semiconductor nanomaterials with sizes between 1 nanometer and 10 nm. A major challenge arises when promoting the growth of these materials, as each individual unit grows differently; hence, the spectrum of light emitted by the material after excitation is broadened, with the various components emitting at slightly different frequencies, and the color of the emission is less precise. When a single particle is isolated, the spectrum becomes narrower, but signal detection is retarded. In other words, spectral resolution is enhanced but at the loss of temporal resolution.

“About five years ago we began working with a technique that can pick out subsets comprising a few thousand identical particles from a set of 1020 nm particles,” Padilha said. “This has enabled us to achieve very fine and precise spectral resolution, as well as fine temporal resolution. In this study, we obtained single-particle spectral resolution for a group of particles in an exceptionally short time.”

As noted, this experimental solution enabled the researchers to access hitherto unknown physical processes, such as the ultrafast exciton-phonon interaction. It is worth recalling that in condensed matter physics, the phonon is a quasi-particle associated with the quantum of vibration that propagates in a crystal lattice.

There are no immediate technological applications for the results obtained, but in the not-too-distant future, knowledge of physical interactions on the femtosecond timescale can help scientists control the structure of materials such that excitons retain energy from electrical or light impulses for longer periods, retarding decoherence in quantum systems.

“Prolonging coherence is key to the success of devices such as optical switches and single-photon emitters,” Almeida said. “Actually, what you aim to do is reduce energy waste to a minimum. When the material changes color, it means it’s losing energy. We discovered that this loss is extremely fast. That’s what we want to delay.”

###

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Media Contact
Joao Carlos Silva
[email protected]
55-113-838-4381

Original Source

http://agencia.fapesp.br/31657/

Related Journal Article

http://dx.doi.org/10.1103/physrevlett.123.057403

Tags: Chemistry/Physics/Materials SciencesNanotechnology/MicromachinesOpticsParticle PhysicsSuperconductors/Semiconductors
Share15Tweet9Share3ShareShareShare2

Related Posts

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

August 10, 2025
blank

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

August 10, 2025

Enhancing Lithium Storage in Zn3Mo2O9 with Carbon Coating

August 10, 2025

Surfactants and Oils Shape Emulsion Ripening Rates

August 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

Enhancing Lithium Storage in Zn3Mo2O9 with Carbon Coating

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.