• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 20, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ultrafast optical response and ablation mechanisms of molybdenum disulfide

Bioengineer by Bioengineer
May 26, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Changji Pan, Lan Jiang, Jingya Sun, Qingsong Wang, Feifei Wang, Kai Wang, Yongfeng Lu, Yeliang Wang, Liangti Qu and Tianhong Cui

Molybdenum disulfide (MoS2) has attracted considerable attention because of its potential applications in field-effect transistors, optoelectronic devices, and electrocatalysts, among others. For successful application of MoS2 in optoelectronics, it is necessary to understand the electron dynamics, which is known to determine the electronic transport and optical properties of semiconductors. In addition to its importance in optoelectronics applications, the ultrafast electron dynamics also plays a vital role in the laser fabrication of MoS2. Numerous valuable studies on the electron dynamics have already focused on the attractive properties of MoS2; however, they all investigated the free electron density below the damage level. At a laser fluence above the damage threshold, the electron dynamics may differ from that under lower-energy excitation. Therefore, it is necessary to provide deeper insights into the electron dynamics when an ultrafast intense laser pulse is applied.

In a new paper published in Light Science & Application, scientists from the Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, PR China, in cooperation with a scientist at the University of Minnesota, predicted and examined what happens to molybdenum disulfide on the electron and lattice level under irradiation by intense femtosecond laser pulses. A theoretical model was first developed for MoS2 to simulate electron dynamics during femtosecond laser ablation processes. Simultaneously, a pump-probe setup was constructed to detect the ultrafast optical response of MoS2 under irradiation by intense femtosecond laser pulses. The results revealed two types of ablation mechanisms, which led to two distinct types of electron dynamics and final ablation morphology. At a higher fluence, the emergence of a superheated liquid induced a dramatic change in the transient reflectivity and micro-honeycomb structures. At a lower fluence, the material was just removed by sublimation, and the ablation structure was relatively flat. To further examine the ablated surface, X-ray photoelectron spectroscopy (XPS) measurement was performed. The results demonstrated that thermal decomposition occurred only at the higher fluence. According to the simulation results, under a higher fluence, the lattice temperature was much higher than the melting point of MoS2, whereas under a lower fluence, the lattice temperature was just below the melting point. The simulation results were in good agreement with the XPS results, as well as pump-probe detection.

The simulated and experimental results revealed the behaviour of electrons and the lattice during femtosecond laser ablation of MoS2, which enabled the manufacturing processes to be presented from electron level. This method and theoretical model provide a new perspective for understanding the mechanism of femtosecond laser processing, and even the control of the patterns and properties of materials. These scientists summarise their simulated and experimental work:

“We built up a theoretical model for MoS2 to account for several complex physical processes during femtosecond laser ablation, including (1) photoionisation, (2) free electron heating, (3) impact ionisation, (4) electron-lattice coupling, and (5) free electron recombination.”

“We constructed a pump-probe setup to directly detect the ultrafast optical response of MoS2 under irradiation by intense femtosecond pulses. This detection system can detect the evolution of the electron dynamics with high spatial and temporal resolution.”

“Our simulation results are in good agreement with the detection results, which indicates that the model is valid for predicting the interaction between a femtosecond laser and MoS2, and further provides more detailed information on the ultrafast electron dynamics during ablation processes.”

###

Media Contact
Lan Jiang
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-0318-8

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailored Australian Carbon Farming Boosts Co-Benefits

Rewrite Population structure, regions of homozygosity (ROH) and selection signal of two domesitic goat breeds revealed by whole-genome resequencing as a headline for a science magazine post, using no more than 8 words

Innovative Technologies for Sustainable Crop Protection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.