• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ultrafast excitations in correlated systems

Bioengineer by Bioengineer
January 24, 2024
in Chemistry
Reading Time: 3 mins read
0
Triggered phase transition
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of researchers from the European XFEL together with colleagues from the Max Born Institute in Berlin, Universities of Berlin and Hamburg, The University of Tokyo, the Japanese National Institute of Advanced Industrial Science and Technology (AIST), the Dutch Radboud University, Imperial College London, and Hamburg Center for Ultrafast Imaging, have presented new ideas for ultrafast multi-dimensional spectroscopy of strongly correlated solids. This work has now been published in Nature Photonics.

Triggered phase transition

Credit: MBI: Olga Smirnova / Universität Hamburg: Alexander Lichtenstein

An international team of researchers from the European XFEL together with colleagues from the Max Born Institute in Berlin, Universities of Berlin and Hamburg, The University of Tokyo, the Japanese National Institute of Advanced Industrial Science and Technology (AIST), the Dutch Radboud University, Imperial College London, and Hamburg Center for Ultrafast Imaging, have presented new ideas for ultrafast multi-dimensional spectroscopy of strongly correlated solids. This work has now been published in Nature Photonics.

“Strongly correlated solids are complex and fascinating quantum systems in which new electronic states often emerge, especially when they interact with light,” says Alexander Lichtenstein from Hamburg University and Eu-XFEL. Strongly correlated materials, which include high-temperature superconductors, certain types of magnetic materials, and twisted quantum materials among others, both challenge our fundamental understanding of the microcosm and offer opportunities for many exciting applications ranging from materials science to information processing to medicine: for example, superconductors are used by MRI scanners.

This is why understanding the hierarchy and the interplay of the diverse electronic states arising in strongly correlated materials is very important. At the same time, it challenges our experimental and theoretical tools, because transformations between these states are often associated with phase transitions. Phase transitions are transformations that do not develop smoothly from one stage to the next but may occur suddenly and quickly, in particular when the material is interacting with light.

What are the pathways of charge and energy flow during such a transition? How quickly does it occur? Can light be used to control it and to sculpt the electron correlations? Can the light bring the material into a state that the material wouldn’t find itself in under the usual circumstances? These are the types of questions that can be addressed with powerful and sensitive devices like X-ray lasers such as the European XFEL in Schenefeld near Hamburg, and with the modern optical tools of attosecond science (1 attosecond = 10-18 second or the billionth part of a billionth second. In one attosecond, light travels less than a millionth of a millimeter).

In their work, the international team now presents a completely new approach that makes it possible to monitor and decipher the ultrafast charge motion triggered by short laser pulse illuminating a strongly correlated system. They have developed a variant of ultrafast multi-dimensional spectroscopy, taking advantage of the attosecond control of how multiple colors of light add to form an ultrashort laser pulse. The sub-cycle temporal resolution offered by this spectroscopy shows the complex interplay between the different electronic configurations and demonstrates that a phase transition from a metallic state to an insulating state can take place within less than a femtosecond – i.e. in less than one quadrillionth of a second.

“Our results open up a way of investigating and specifically influencing ultrafast processes in strongly correlated materials that goes beyond previous methods,” says Olga Smirnova from the Max Born institute and Berlin TU, awardee of the Mildred Dresselhaus prize of the Hamburg Centre for Ultrafast Imaging, “we have thus developed a key tool for accessing new ultrafast phenomena in correlated solids.”



Journal

Nature Photonics

DOI

10.1038/s41566-023-01371-1

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Sub-cycle multidimensional spectroscopy of strongly correlated materials

Article Publication Date

24-Jan-2024

COI Statement

We declare that none of the authors have competing financial or non-financial interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1116 shares
    Share 446 Tweet 279
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex and Smoking Shape Bladder Mutation Patterns

Revolutionizing Object Detection: Global Influence and Trends

Research Lab Unveils Breakthrough in mRNA Cancer Vaccine Technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.