• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ultrafast and ultra-sensitive protein detection method allows for ultra-early disease diagnoses

Bioengineer by Bioengineer
December 22, 2022
in Chemistry
Reading Time: 3 mins read
0
Illustration of the principle underlying the detection of trace amounts of proteins
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka, Japan – Protein detection based on antigen–antibody reaction is vital in early diagnosis of a wide range of diseases. How to effectively detect proteins, however, has frequently bedeviled researchers. Osaka Metropolitan University scientists have discovered a new principle underlying light-induced acceleration of antigen–antibody reaction, allowing for simple, ultrafast, and highly sensitive detection of proteins. Their findings were published in Communications Biology.

Illustration of the principle underlying the detection of trace amounts of proteins

Credit: Takuya Iida, OMU

Osaka, Japan – Protein detection based on antigen–antibody reaction is vital in early diagnosis of a wide range of diseases. How to effectively detect proteins, however, has frequently bedeviled researchers. Osaka Metropolitan University scientists have discovered a new principle underlying light-induced acceleration of antigen–antibody reaction, allowing for simple, ultrafast, and highly sensitive detection of proteins. Their findings were published in Communications Biology.

“The antigen–antibody reaction is a biochemical reaction that plays a crucial role in immunity, the body’s defense function,” explained lead researcher Professor Takuya Iida, Director of the Research Institute for Light-induced Acceleration System at Osaka Metropolitan University. Methods to analyze trace amounts of proteins based on antigen–antibody reaction enable diagnosis at an early stage of many diseases, including cancer, dementia, and microbial infections. However, such methods either have limited sensitivity or require complex and time-consuming processing to allow antigen–antibody reactions to occur.

Aiming to accelerate antigen–antibody reactions, the researchers introduced target proteins and probe particles, with modified antibodies that selectively bind to the target proteins, into a channel that is as narrow as a human hair or artery and then applied irradiation with infrared laser light for 3 minutes, making it possible to carry out detection at a sensitivity approximately 100 times higher than that of conventional protein testing.

The researchers achieved, for the first time, the rapid measurement of trace amounts of target proteins on the order of tens of attograms (ag = 10−18 g; one quintillionth of a gram) after only 3 minutes of laser irradiation.

The study results demonstrate that rapid and highly sensitive detection can be achieved by condensing proteins through the simple operation of confining them in a small space and irradiating them with a laser to accelerate the reaction. These findings will facilitate the detection of disease-related substances from a small amount of body fluids, such as a single drop of blood, and will assist in the discovery of novel disease markers, potentially leading to breakthroughs in the development of systems for ultra-early diagnosis of various diseases.

“In an interdisciplinary collaboration beyond physics, chemistry, and biology, we uncovered a new principle underlying the control of antigen–antibody reaction by optical force, or light-induced force,” concluded Professor Iida. “I hope that the advantage of being able to measure trace markers with high sensitivity and speed by simple laser irradiation will aid in ultra-early diagnosis.”

 

###

About OMU

Osaka Metropolitan University is a new public university established by a merger between Osaka City University and Osaka Prefecture University in April 2022. For more science news, see https://www.omu.ac.jp/en/info/research-news/, and follow @OsakaMetUniv_en, or search #OMUScience.



Journal

Communications Biology

DOI

10.1038/s42003-022-03946-0

Method of Research

Experimental study

Article Title

Attogram-level light-induced antigen-antibody binding confined in microflow

Article Publication Date

6-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    69 shares
    Share 28 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Link Between AIP and T2DM in NAFLD Patients

Probiotics Alleviate Ovarian Angiogenesis in PCOS Models

Gene Variants Linked to Antipsychotic-Induced Movement Disorders

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.