• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ultra-small hollow alloy nanoparticles for synergistic hydrogen evolution catalysis

Bioengineer by Bioengineer
October 28, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Because hydrogen fuel has high energy density and does not pollute the environment, it has now shown the potential to replace fossil energy. The hydrogen evolution reaction (HER) is one of the most promising hydrogen production methods as a half-reaction of the electrolysis of water. Currently, traditional Pt-based compounds are used as the most active electrocatalysts for hydrogen evolution reactions. However, Pt is relatively scarce and expensive. Therefore, designing and synthesizing highly efficient, stable, and inexpensive catalysts is a frontier topic in the field of water electrolysis.

Recently, Zhenxing Li and his team from China University of Petroleum (Beijing) have made exciting progress in the preparation of HER catalysts, using a simple one-pot method to synthesize ultra-small hollow ternary alloy nanoparticles, including PtNiCu nanoparticles, PtCoCu nanoparticles and CuNiCo nanoparticles. During synthesis, the displacement reaction and oxidative etching played important roles in the formation of hollow structures. The average size of PtNiCu nanoparticles is only 5 nm and contains only 10% Pt (Figure 1). The unique hollow structure and large specific surface area increase the degree of surface atom exposure, provide abundant active centers, and make PtNiCu nanoparticles exhibit excellent electrocatalytic activity and stability. In alkaline electrolyte, the overpotential of hollow PtNiCu nanoparticles at 10 mA cm-2 is as low as 28 mV versus RHE with a Tafel slope of 52.1 mV dec-1 (Figure 2), which was lower than those of commercial Pt/C. In addition, its mass activity is 5.62-fold higher than that of commercial Pt/C system. This effectively reduces the cost of platinum-based electrocatalysts and ensures that platinum atoms are used more efficiently.

By analyzing the bonding and antibonding orbital filling, the density functional theory (DFT) calculations show that the ΔGH* of PtNiCu nanoparticles is 0.05 eV, which is close to zero (Figure 3). In the hydrogen evolution reaction (HER) reaction process, the bonding strength of different metals to the hydrogen intermediate (H*) was in the order of Pt > Co > Ni > Cu. Thus, the excellent HER performance of hollow PtNiCu nanoparticles can be attributed to moderately synergistic interactions between the three metals and H*. Combining theoretical calculations with experimental data, this work provides a new strategy for the design and preparation of low-cost and high-performance HER catalysts.

###

This research received funding from the Beijing Natural Science Foundation (Grant No. 2182061) and Science Foundation of China University of Petroleum, Beijing (Grant No. 2462019BJRC001).

See the article:

Zhenxing Li, Chengcheng Yu, Yikun Kang, Xin Zhang, Yangyang Wen, Zhao-Kui Wang, Chang Ma, Cong Wang, Kaiwen Wang, Xianlin Qu, Miao He, Ya-Wen Zhang, and Weiyu Song

Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction

Natl Sci Rev, nwaa204

https://doi.org/10.1093/nsr/nwaa204

Media Contact
Zhenxing Li
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa204

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025

Revealing the Unseen: A Breakthrough Method to Enhance Nanoscale Light Emission

August 29, 2025

Fluorescent Smart Eye Patch Revolutionizes Monitoring of Eye Health

August 29, 2025

Protective Dual Shell Extends Lifespan of Lithium-Rich Batteries

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex Differences in MMP-9 Regulation of Anxiety, Depression

Multisystem Exercises Boost Balance and Mobility in Diabetics

CITED4 Boosts Gemcitabine Resistance in Pancreatic Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.