• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UK study shows cell signaling interaction may prevent key step in lung cancer progression

Bioengineer by Bioengineer
November 9, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LEXINGTON, Ky. (Nov. 9. 2017) – New findings from University of Kentucky faculty published in Scientific Reports reveals a novel cell signaling interaction that may prevent a key step in lung cancer progression.

Kentucky continues to lead the nation in incidence and death rates from lung cancer, and the UK College of Pharmacy is committed to reducing these numbers.

Lung cancers are often diagnosed in later stages, with very few treatment options available. Often patients develop a resistance to a targeted therapy, resulting in a need for a variety of therapies that can be administered in stages or coupled together.

A collaboration between the UK College of Pharmacy and the Department of Statistics in the UK College of Arts and Sciences is working to address this problem. The project is the work of Madeline Krentz Gober, a recent graduate of the UK College of Pharmacy's Graduate Program in the lab of pharmacy faculty member Penni Black. Staff scientist James Collard and UK College of Arts and Sciences faculty member Katherine Thompson also contributed to the findings.

Previous work from the group established that a collection of microRNAs — small RNA that plays a role in regulating biological process like growth and proliferation — could predict sensitivity of non-small cell lung cancer cells to erlotinib, a drug that is effective in treating lung cancer in certain patients.

Further investigation into this collection of microRNA genes revealed a previously unknown relationship between the role of transforming growth factor TGFβ in initiating metastasis and epidermal growth factor receptor (EGFR) signaling non-small cell lung cancers.

Essentially, microRNA molecules that alter TGFβ activity may prevent a key step in metastasis for cancer progression known as epithelial-mesenchymal transition, and this interaction may also require the activity of EGFR, perhaps unappreciated in the initiation of metastasis.

"Getting the right drugs in the right patients is critical to improving cancer outcomes," said Jill Kolesar, co-director of the Molecular Tumor Board at the UK Markey Cancer Center. "Dr. Black's work is an important step in predicting which patients benefit most from erlotinib treatment."

Ongoing work in the Black lab seeks to uncover biomarkers of response and toxicity to new immunotherapeutic agents used in the fight against lung cancer.

###

Media Contact

Allison Perry
[email protected]
859-323-2399
@universityofky

http://www.uky.edu

http://uknow.uky.edu/uk-healthcare/uk-study-shows-cell-signaling-interaction-may-prevent-key-step-lung-cancer-progression

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Impact of Perfluoroalkyl Substances on E. coli Phases

November 9, 2025
blank

Assessing Spikelet Fertility and HSP70 for Heat Tolerance

November 9, 2025

Unlocking Early-Onset Schizophrenia: Blood Neurotransmitters Revealed

November 9, 2025

Enhancing Pain Care for Frail Seniors: Insights Unveiled

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Perfluoroalkyl Substances on E. coli Phases

Assessing Spikelet Fertility and HSP70 for Heat Tolerance

Unlocking Early-Onset Schizophrenia: Blood Neurotransmitters Revealed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.