• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UH engineer locates brain’s seizure onset zone in record time

Bioengineer by Bioengineer
February 11, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Houston

HOUSTON, Feb. 1, 2018 – A University of Houston biomedical engineer is reporting a dramatic decrease in the time it takes to detect the seizure onset zone (SOZ), the actual part of the brain that causes seizures, in patients with epilepsy.

Nearly 30 percent of epilepsy patients are resistant to drug therapy, so they have the option of surgery to remove their seizure onset zones. Most of them opt in, according to assistant professor Nuri Ince, noting the improved quality of life for sufferers.

Using oscillating brain waves, rather than observing seizures as they happen, Ince locates the seizure onset zone in one hour. Current treatment protocols for detecting the zone require prolonged monitoring in the hospital for up to 10 days. Ince's new method to locate the seizure onset zone, reported in Brain, A Journal of Neurology, could save patients weeks of hospitalization, reduce complications and costs associated with what has traditionally been an arduous, and often painful, procedure.

"We observed that the high frequency oscillations in the SOZ form random, repetitive waveform patterns that identify their location," said Ince, who compares the process to a broken bike or car which makes the same sound randomly, yet repetitively. "In a car it's a sound, in a brain it's the oscillatory patterns that are almost screaming 'I am here!'"

Exploring the brain

Ince and his former graduate student, Su Liu, studied pediatric and adult brain patterns provided by collaborators at Texas Children's Hospital, Baylor College of Medicine, University of Texas MD Anderson Cancer Center, Istanbul University and University of Minnesota.

Ince developed a pipeline of machine learning algorithms to interpret the brain waves, and after two years his algorithm identified the pattern.

"We got goosebumps when we saw it," said Ince, recalling the moment he realized that the patterns could not only be found quickly, but also could add to the medical community's understanding and knowledge of how seizures start.

Critical to Ince's discovery is delineating between the high-frequency oscillations that signify the SOZ from the ones ignited by normal functioning, like movements or talking. The regions can be located very close together, and the overlap between physiological and pathological oscillations are seemingly indistinguishable. That, along with difficulties associated with visual inspection of prolonged invasive recordings, is why current detection protocol ignores the oscillations, tracking only the seizures themselves. The current method, requiring prolonged patient hospitalization, requires a patient and medical team to wait for seizures to occur to identify their onset location.

"Can you imagine monitoring a patient for just one hour, as compared to before when it takes days or weeks?" Ince said, still marveling at the saving of both time and money this translational project will bring to the patient and their families.

###

To read the journal article, Stereotyped high-frequency oscillations of local electrical field potentials discriminate seizure onset zones and critical functional cortex in focal epilepsy, click here .

To watch a video of the discovery, click here .

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 45,000 students in the most ethnically and culturally diverse region in the country.

Media Contact

Laurie Fickman
[email protected]
713-743-8454
@UH_News

http://www.uh.edu/news-events

Original Source

http://www.uh.edu/news-events/stories/2018/february-2018/2118-Nuri-Ince-Seizure-Zone.php

Share12Tweet8Share2ShareShareShare2

Related Posts

Mapping Ovarian Cortex Cell Subpopulations with Flow Cytometry

October 2, 2025

Evaluating SUGAR Handshake to Prevent Hypoglycemia in Seniors

October 2, 2025

Evaluating China’s Health Insurance Payment Policy Effectiveness

October 2, 2025

How Hemagglutinin Changes Affect H5N1 Virus Fitness

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    68 shares
    Share 27 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Heat-Rechargeable DNA Logic Circuits Advance Computing

Mapping Ovarian Cortex Cell Subpopulations with Flow Cytometry

Advances in Perovskite Film Patterning for Photodetectors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.