• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

UGA research links inorganic mercury exposure to damaged cell…

Bioengineer.org by Bioengineer.org
January 26, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

IMAGE: Stephen LaVoie at the University of Georgia studies inorganic mercury, which is known to cause neurological, kidney and autoimmune diseases.

Credit: Dorothy Kozlowski/University of Georgia

Athens, Ga. – University of Georgia research has found that inorganic mercury, which was previously thought to be a less harmful form of the toxic metal, is very damaging to key cell processes.

This study is the first to compare the effects of inorganic and organic mercury compounds at the biochemical, physiological and proteomic levels in any model organism, according to the study's lead author Stephen LaVoie, a microbiology doctoral student. Published in December in the Journal of Biological Inorganic Chemistry, the research looked at how inorganic and organic mercury affected specific molecular processes.

Inorganic mercury from the ore cinnabar was used for centuries against infections; in modern times, humans synthesized organic mercurials as antimicrobials, such as merthiolate.

"Today, most human exposure to inorganic mercury is from dental fillings, and organic mercury exposure is from methylmercury in fish," said study co-author Anne Summers, a microbiology professor in the Franklin College of Arts and Sciences.

Organic mercury exposure is associated with neurological disease, LaVoie explained, whereas inorganic mercury is known to cause neurological, kidney and autoimmune diseases. However, the molecular basis for their distinct toxicity profiles was not understood.

Owing to concern about fish consumption, most research has emphasized organic mercury, assuming it was more toxic, LaVoie said. But comparing them on key cellular processes, he found that inorganic mercury "caused more damage at lower concentrations than organic mercury."

For his study, LaVoie used a common lab strain of E. coli bacteria as a model cellular system. He exposed growing cells to mercury compounds and measured their reactive sulfur called thiols–essential metals and proteins that naturally bind essential metals via amino acid thiols.

"We used a fluorescent probe to detect thiols," LaVoie said. After mercury exposure the thiols decreased more with inorganic than organic mercury. Inorganic mercury was much more efficient at removing iron from iron-dependent proteins than the best organic mercury compound tested.

"As fellow oxygen-breathing creatures, it's important to know that inorganic mercury is more potent than organic mercury in disrupting protein-iron centers such as those we have in our own cells, " Summers said.

"More is being learned about the bacteria in and on our bodies," LaVoie said. "What we ingest affects them, too, and their health affects our health."

###

Future work will examine the mercury resistance genes that many bacteria have and how these genes help spread antibiotic resistance genes.

Co-authors of the paper include Darin M. Cowart, Michael K. Johnson and Robert A. Scott of the University of Georgia, Daphne T. Mapolelo of the University of Botswana, and Benjamin J. Polacco and Susan M. Miller of the University of California, San Francisco.

This work was supported by DOE awards ER64408 and ER65286 to AOS and ER64409 and ER65195 to SMM and NIH award GM62524 to MKJ.

To read the full study, "Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli," visit http://link.springer.com/article/10.1007%2Fs00775-015-1303-1.

Share12Tweet8Share2ShareShareShare2

Related Posts

Captive African Elephants Display Unique Reactions to Novelty

Captive African Elephants Display Unique Reactions to Novelty

September 27, 2025
Inhibiting DDR1 Enhances Carbon Ion Therapy Efficacy

Inhibiting DDR1 Enhances Carbon Ion Therapy Efficacy

September 27, 2025

Duplicate CYP6P9a/b Confers Resistance in Anopheles Funestus

September 27, 2025

Cancer Challenges in HIV-Positive Children: ART Era

September 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    81 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Captive African Elephants Display Unique Reactions to Novelty

Inhibiting DDR1 Enhances Carbon Ion Therapy Efficacy

Duplicate CYP6P9a/b Confers Resistance in Anopheles Funestus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.